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Chapter 1

Introduction

The aim of this deliverable is to provide a preliminary analysis of the state of the art on cryptographic aspects
of distributed ledgers. In Chapter 2 we introduce some terminologies and definitions that are used across this
document. Chapter 3 focuses on Consensus; (a.k.a. Byzantine agreement) which arguably one of the most fun-
damental problems in distributed systems, playing also an important role in the area of cryptographic protocols
as the enabler of a (secure) broadcast functionality. While the problem has a long and rich history and has been
analysed from many different perspectives, recently, with the advent of blockchain protocols like Bitcoin, it has
experienced renewed interest from a much wider community of researchers and has seen its application expand
to various novel settings. One of the main issues in consensus research is the many different variants of the
problem that exist as well as the various ways the problem behaves when different setup, computational assump-
tion and network models are considered. This part of the document hence, aims to perform a systematisation of
knowledge in the landscape of consensus research starting with the original formulation in the early 80’s up to
the present blockchain-based new class of consensus protocols. Moreover we study the consensus problem under
its many guises, classifying the way it operates in many settings and highlighting the exciting new applications
that have emerged in the blockchain era.

In Chapter 4 we classify the cryptographic ledgers in three main categories: Proof of Work (PoW), Byzantine-
Fault Tolerant (BFT) and Proof of Stake (PoS) based ledgers, and describe the main aspects of those categories
together with a summary on the state of the art. In Chapter 5 we also focus on privacy-preserving techniques and
systems that provide privacy to the users of the blockchain. In more details, we describe the major techniques
used to hide information on a blockchain (e.g. the amount of coins that has been transferred in a transaction
when the blockchain implements a cryptocurrency). Moreover, a description of some of the well known systems
that use privacy-preserving techniques is provided.

Chapter 6 focuses on the relation between distributed ledgers and cryptographic protocols. For example, one
of aspect that is explored in this part of the document is how distributed ledgers can improve the security of
multi-party computation protocols. Interestingly, the use of distributed ledgers makes possible to achieve novel
results in this area.

In the last chapter we propose some open questions that are related to the content of this document and that
could be interesting to answer. Part of these open questions arose during the writing of this work document.
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Chapter 2

Execution Model and Basic Assumptions

2.1 Model and Definitions

2.1.1 Protocol Execution

In order to provide a formal description of protocols and their executions it is useful to consider a formal model
of computation. We choose the Interactive Turing Machine (ITM) based resource bounded model put forth
by [Gol01, Can01]. An ITM is like a Turing Machine but with the addition of an incoming and an outgoing
communication tape as well as an identity tape and a “subroutine” tape. When an instance of an ITM is generated
(we henceforth call this an ITI, standing for interactive Turing Machine Instance), the identity tape is initialised
to a specific value that remains constant throughout the instance’s execution. The ITI may communicate with
other ITIs by writing to its outgoing communication tape.

Let us consider a protocol Π that is modelled as an ITM. Ideally, we would like to consider the execution of
this protocol in an arbitrary setting, i.e., with an arbitrary set of parties and arbitrary configuration. A common
way to model this in cryptography and distributed systems is to consider that a certain program, thought of as an
adversary, produces this configuration and therefore the properties of the protocol should hold for any possible
choice of that program, potentially with some restrictions that are explicitly defined. The advantage of this
particular modelling approach is that it obviates the need to quantify over all the details that concern the protocol
(and substitutes them with a single universal quantification over all such “environments”).

Suppose now that we have a protocol Π that is specified as an ITM and we would like to consider all possible
executions of this protocol in the presence of an adversary A, that is also modelled as an ITM. We capture this
by specifying a pair of ITM’s (Z, C), called the “environment” and the “control program” respectively.

The environment Z is given some input which may be trivial (like a security parameter 1κ) and is allowed
to “spawn” new ITIs using the programs of Π and A. By convention, only a single instance of A is allowed.
Spawning such new instances is achieved by writing a single message on Z outgoing tape which is read by C.
The control program is responsible for approving such spawning requests byZ . Subsequently, all communication
of the instances that are created is routed via C, i.e., C receives the instances’ outgoing messages and checks
whether they can be forwarded to the receiving parties’ incoming tape. Note that this may be used to simulate
the existence of point to point channels, nevertheless we take a more general approach. Specifically, the control
function C by definition only permits outgoing messages of running ITIs to be sent to the adversary A (with
instructions for further delivery). This captures the fact that the network cannot be assumed to be safe for
the instances that are communicating during the protocol execution. Beyond writing messages that are routed
throughA, ITIs can also spawn additional ITIs as prescribed by the rules hardcoded in C. This enables instances
of a protocol Π to invoke subroutines that can assist in its execution. These subroutines can be sub-protocols or
instances of “ideal functionalities” that may be accessible by more than a single running instance (mode details
on ideal functionalities follow in this section).

Given these features, the above approach provides a comprehensive framework for reasoning about protocol
executions. Nevertheless, some care needs to be applied to ensure that the total execution runtime of the (Z, C)
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system remains polynomial: it is easy to see that even if all ITIs are assumed to be polynomially bounded,
the total execution runtime may not be. By introducing a more refined time-keeping capability for ITIs, it was
proven in [Can01] that as long as the ITM Z is “locally polynomially bounded” (see [Can01] for more details on
polynomial time ITMs) and C is a polynomial-time computable function, the execution of (Z, C) as described
above when Z is given input κ is polynomial-time bounded in κ (cf. Proposition 3 in [Can01]). From this point
on we assume always that Z is locally polynomial bounded and, for brevity, we just state that it is polynomial
bounded.

We use poly(·) to indicate a generic polynomial function. Let κ be the security parameter, and assume
that any function, set size or running time implicitly depends on this parameter (especially when we write negl
to describe a negligible function in κ—i.e., negl < 1/poly(κ) for large enough κ). For any ε, we say that
two distribution ensembles {Xκ}κ∈N, {Yκ}κ∈N are ε-indistinguishable, denoted {Xκ} ≈ε {Yκ}, if for any
probabilistic polynomial-time (PPT) algorithm C, for large enough κ,

|Pr[C(1κ, Xκ) = 1]− Pr[C(1κ, Yκ) = 1]| < ε+ negl(κ).

We say thatX and Y are computationally indistinguishable and denote {Xκ} ≈ {Yκ} if they are ε-indistinguishable
with ε = 0 under a certain computational assumption.
Functionalities. We next need to specify the “resources” that may be available to the instances running protocol
Π. For instance, access to a reliable point-to-point channel or a “diffuse” channel (see below). To allow for the
most general way to specify such resources we follow the approach of describing them as “ideal functionalities”
in the terminology of [Can01]. In simple terms, an ideal functionality is another ITM that may interact with
instances running in parallel in the protocol execution. The critical feature of ideal functionalities though is that
they can be spawned by ITIs running protocol Π. In such case, the protocol Π is defined with respect to the
functionality F . The ideal functionality may interact with the adversary A as well as other ITIs running the
protocol Π. One main advantage of using the concept of an ideal functionality in our setting is that we can
capture various different communication resources that may be available to the participants running the protocol.
For instance, a secure channel functionality may be spawned to transmit a message between two instances of Π
that only leak the length of the message to the adversary. As another example, a message passing functionality
may ensure that all parties are activated prior to advancing to the next communication round.
Execution of multiparty protocols. When protocol instances are spawned byZ they are initialised with an iden-
tity which is available to the protocol program’s code as well as, possibly, with the identities of other instances
that may run in parallel (this is at the discretion of the environment program Z). The identities themselves may
be useful to the program instance, as they may be used by the instance to address other instances running in
parallel. We use the notation VIEWΠ,A,Z(κ) denote an execution of the protocol Π with an adversary A and an
environment Z . The execution is a string that is formed by the concatenation of all messages and all ITI states
at each step of the execution of the system (Z, C). The total length of the execution is polynomial in κ. The
parties’ inputs are provided by the environment Z which also receives the parties’ outputs. Parties that receive
no input from the environment remain inactive. The environment may provide input to a party at any round and
may also modify that input from round to round. We denote by INPUT the input tape of each party.

We note that by adopting the resource bounded computation modelling of systems of ITMs by [Can01]
we obviate the need of imposing a strict upper bound on the number of messages that may be transmitted by
the adversary in each activation. In our setting, honest parties, at the discretion of the environment, are given
sufficient time to process all messages delivered by any communication functionality given to them as a resource.
It follows that denial of service attacks cannot be used to the adversary’s advantage in the analysis (they are out
of scope from our perspective of studying the consensus problem).
Properties. In this document we talk about the properties of protocols Π. Such properties are defined as predi-
cates over the random variable VIEWΠ,A,Z(κ) by quantifying over all possible adversaries A and environments
Z . Note that protocols may only satisfy some properties with a small probability of error in κ as well as in
potentially other parameters. The probability space is determined by the private coins of all participants and the
functionalities they employ. Formally we have the following.

3
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Definition 1. Given a predicateQwe say that the protocol Π satisfies propertyQ provided that for all polynomial-
time Z,A the probability that Q(VIEWΠ,A,Z(κ)) is false is negligible in κ.

Note that we only consider properties that are polynomial-time computable predicates. Furthermore, the
predicates that we consider are conform to the following rule: given an execution E distributed according to
VIEWΠ,A,Z(κ), if E′ is a session of protocol Π that unfolds in the course of E, it holds that Q is defined over E′

and Q(E)→ Q(E′).
Asynchronous vs. synchronous execution. Our description above captures both asynchronous and synchronous
models of execution. Specifically the asynchronous setting can be captured by a communication functionality
that accepts messages and enables the adversary to delay message delivery arbitrarily. Regarding synchronous
communication we can easily incorporate it in the model, following [KMTZ13], and incorporate via a function-
ality a mechanism that keeps track of parties’ activations and ensures that parties do not advance to the next
“round” until all parties have been activated by the environment.
Static vs. dynamic environments. The model we present captures both static and dynamic environments.
Specifically, it is suitable for protocols that run with a fixed number of parties that should be known to all
participants in advance but it can also allow protocols for which the number of participants is not known a-priori
and, in fact, it may not even be known during the course of the execution. Note that in order to allow for proper
ITI intercommunication we need to assume that the total set of parties is known, nevertheless, only a small subset
of them may be active in a particular moment during the protocol execution.
Setup assumptions. In a number of protocols, there is a need to have some pre-existing configuration (such as
the knowledge of a common random string (CRS), or a public-key infrastructure [PKI]). Such setup assumptions
can also be easily captured as separate functionalities F that are available to the running protocol ITIs.
Permissioned vs. permissionless networks. In the context of the consensus problem, this terminology became
popular with the advent of blockchain protocols. The Bitcoin blockchain protocol is the prototypical “per-
missionless” protocol where read access to the ledger is unrestricted and write access (in the form of posting
transactions) can be obtained by anyone that possesses bitcoin (which may be acquired, in principle, by anyone
that is running the Bitcoin client and invests computational power solving proofs of work). On the other hand, a
permissioned protocol imposes more stringent access control on the read and write operations that are available
as well as with respect to who can participate in the protocol. Extrapolating from the terminology as applied in
the ledger setting, a permissionless consensus protocol would enable any party to participate and contribute in-
put for consideration of the other parties. With this in mind, the traditional setting of consensus is permissioned,
since only specific parties are allowed to participate; on the other hand, consensus in the blockchain setting can
be either permissioned or permissionless.
Cryptographic primitives. Some standard cryptographic primitives will be useful in the description of the
consensus protocols. We overview them below. A digital signature scheme consists of three PPT algorithms
(Gen, Sign, Verify) such that (vk, sk) ← Gen(1κ) generates a public-key/secret-key pair, σ ← Sign(sk,m)
signs a message m, Verify(vk,m, σ) returns 1 if and only if σ is a valid signature for m given vk. A digital
signature scheme is existentially unforgeable, if for any PPT adversaryA, that has access to a Sign(sk, ·) oracle,
the event that A returns some (m,σ) such that Verify(vk,m, σ) = 1 and A did not query the oracle with m,
has measure negl(κ), where the probability is taken over the coin tosses of the algorithms. A collision resistant
(keyed) hash function family {Hk}k∈K has the property thatHk : {0, 1}∗ → {0, 1}κ, it is efficiently computable
and the probability to produce x 6= y with Hk(x) = Hk(y) given k is negl(κ).

2.1.2 The Consensus Problem

Consensus (aka Byzantine agreement), formulated by Shostak, Pease and Lamport [PSL80, LSP82], is one of
the fundamental problems in the areas of fault-tolerant distributed computing and cryptographic protocols (in
particular secure multi-party computation [Yao82, GMW86, BGW88, CCD87]). In the consensus problem, n
parties attempt to reach agreement on a value from some fixed domain V , despite the malicious behavior of up to
t of them. More specifically, every party Pi starts the consensus protocol with an initial value v ∈ V , and every
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run of the protocol must satisfy (except possibly for some negligible probability) the following conditions:

– Termination: All honest parties decide on a value.

– Agreement: If two honest parties decide on v and w, respectively, then v = w.

– Validity: If all honest parties have the same initial value v, then all honest parties decide on v.

The domain V can be arbitrary, but typically it is enough to consider the case V = {0, 1}, as there exists an
efficient transformation of binary agreement protocols to the multi-valued case [TC84].

There exist various measures of quality of a consensus protocol: its resiliency, expressed as the fraction t
n of

misbehaving parties a protocol can tolerate; its running time—worst number of rounds by which honest parties
terminate; and its communication complexity—worst total number of bits/messages communicated during a
protocol run. In the consensus problem, all the parties start with an initial value. A closely related variant is the
single-source version of the problem (aka the Byzantine Generals problem [LSP82], or simply (reliable or secure)
“broadcast”), where only a distinguished party—the sender—has an input. In this variant, both the Termination
and Agreement conditions remain the same, and Validity becomes:

– Validity: If the sender is honest and has initial value v, then all honest parties decide on v.

A stronger, albeit natural, version of the consensus problem requires the output value to be one of the honest
parties’ inputs, a distinction that is only important in the case of non-binary inputs. In this version, called strong
consensus [Nei94], the Validity condition becomes:

– Strong Validity: If the honest parties decide on v, then v is the input of some honest party.

Note that the resiliency bounds for this version also depend on |V | (see Section 3.1).
Finally, we point out that, traditionally, consensus problems have been specified as above, in a property-

based manner. Protocols for the problem are then proven secure/correct by showing how the properties (e.g., the
Agreement, Validity and Termination conditions) are met. Nowadays, however, it is widely accepted to formulate
the security of a protocol via the “trusted-party paradigm,” cf. [GMW86, Gol01], where the protocol execution
is compared with an ideal process where the outputs are computed by a trusted party that sees all the inputs.
A protocol is then said to securely carry out the task if running the protocol with a realistic adversary amounts
to “emulating” the ideal process with the appropriate trusted party. One advantage of such a simulation-based
approach is that it simultaneously captures all the properties that are guaranteed by the ideal world, without
having to enumerate some list of desired properties. Simulation-based definitions are also useful for applying
composition theorems (e.g., [Can00,Can01]) that enable proving the security of protocols that use other protocols
as sub-routines, which typically would be the case for consensus and/or broadcast protocols.

The above captures the classical definition of the consensus problem. A related and recently extensively
studied version of the problem is state-machine replication or “ledger consensus” that we treat in Section 3.3.

2.2 Network Assumptions

2.2.1 Communication Primitives

Consensus protocols are described with respect to a network layer that enables parties to send messages to each
other. An important distinction we make is between point-to-point connectivity vs. message “diffusion” as it
manifests in a peer-to-peer communication setting.

5
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Point-to-point channels. In this setting, also known as reliable message transmission (RMT), parties are
connected with pairwise reliable and authentic channels. When a party sends a message it specifies its recipient
as well as the message contents and it is guaranteed that the recipient receives it. The recipient can identify the
sender as the source of the message. In such fixed connectivity setting, all parties are aware of the set of parties
running the protocol. Full connectivity has been the standard communication setting for consensus protocols,
see [LSP82], although sparse connectivity has also been considered (cf. [DPPU88, Upf92]).

The ideal functionality that captures RMT is presented in Figure 2.1. We remark that the functionality
captures a synchronous operation.

Functionality FRMT

The functionality interacts with an adversary A and a set P = {P1, . . . , Pn} of parties.
Initialise a boolean flag flag(Pi) to false and a string inbox(Pi) to empty, for all i = 1, . . . , n.

– Upon receiving (Send, sid, Pi, Pj ,m) from Pi, store (Send, sid, Pi, Pj ,m) and hand
(Send, sid, Pi, Pj ,m,mid) to A, where mid is a unique identifier.

– Upon receiving (Activate, sid, Pi) from Pi, set flag(Pi) to true. If it holds that
∧n

i=1 flag(Pi), then for
all i = 1, . . . , n, set flag(Pi) to false, and for any (Send, sid, Pi, Pj ,m,mid) that is recorded as unsent,
mark it as sent, and add (Send, sid, Pi, Pj ,m,mid) to inbox(Pj).

– Upon receiving (Deliver, sid,mid) from A, assuming (Send, sid, Pi, Pj ,m,mid) is recorded as unsent,
mark it as sent, and add (Send, sid, Pi, Pj ,m) to inbox(Pj).

– Upon receiving (Fetch, sid, Pi) from Pi, return inbox(Pi) to Pi and set inbox(Pi) to empty.

Figure 2.1: The reliable message transmission ideal functionality.

In terms of measuring communication costs in this model we use the (maximum) total number of messages
in a protocol run, rather than the total number of communicated bits, assuming a suitable message size. See,
e.g., [Fit03, Chapter 3] for a detailed account of the communication complexity of consensus (and broadcast)
protocols.

Peer-to-peer diffusion. In peer-to peer the message transmission happens via “gossiping,” i.e., messages re-
ceived by a party are passed along on to the party’s peers. We refer to this basic message passing operation as
“Diffuse.” Message transmission is not authenticated, non-atomic and it does not preserve the order of messages
in the views of different parties. When a message is diffused by an honest party, there is no specific recipient
and it is guaranteed that all active parties receive the same message. Nonetheless, the source of the message may
be “spoofed” and thus the recipient may not reliably identify the source of the message,1 and when the sender
is malicious not everyone is guaranteed to receive the same message. Contrary to the point-to-point channels
setting, parties may neither be aware of the other parties that are running the protocol nor their precise number.
The ideal functionality capturing the diffuse operation is presented in Figure 2.2 assuming synchronous network
operation. A salient feature of protocols running in the FDiffuse setting is that the session id may just provide an
abbreviation of the universe of parties P = {P1, . . . , Pn}, of which only a subset may be activated.

In order to measure the total communication costs of peer-to-peer diffusion, one needs to take into account
the underlying network graph. The typical deployment setting is a sparse constant-degree graph for which it
holds that the number of edges equals O(n). In such setting, each invocation of the primitive requires O(n)
messages to be transmitted in the network.

1Note that in contrast to a sender-anonymous channel (cf. [Cha81]), a diffuse channel leaks the identity of the sender to the adversary.
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Functionality FDiffuse

The functionality interacts with an adversary A and a set U of parties. initialise a subset A ⊆ U to ∅, a boolean
flag flag(Pi) to false, and a string inbox(Pi) to empty, for all i such that Pi ∈ U .

– Upon receiving (Send, sid, Pi,m) from Pi, set flag(Pi) to true, store (Send, sid, Pi,m) and hand
(Send, sid, Pi,m,mid) to A, where mid is a unique identifier.

– Upon receiving (Activate, sid, Pi) from Pi, set A = A ∪ {Pi} and flag(Pi) to true.

– if |A| = 1 and there is no recorded entry (Send, sid, Pi,m,mid) then do nothing.

– Otherwise, if it holds that
∧

Pi∈A flag(Pi), then for all i = 1, . . . , n, set flag(Pi) to false, and for
any Pj , Pj ∈ A, and any (Send, sid, Pi,m,mid) that is recorded as unsent for Pj , mark it as sent
for Pj , and add (Send, sid, Pi, Pj ,m,mid) to inbox(Pj).

– Upon receiving (Deliver, sid,mid, P ′
i , Pj) from A and Pj ∈ A, assuming (Send, sid, Pi,m,mid) is

recorded as unsent for Pj , mark it as sent for Pj , and add (Send, sid, P ′
i , Pj ,m) to inbox(Pj).

– Upon receiving (Fetch, sid, Pi) from Pi, return inbox(Pi) to Pi and set inbox(Pi) to empty.

Figure 2.2: The peer-to-peer diffuse ideal functionality.

Relation between the communication primitives It is easy to see that given RMT, there is a straightforward,
albeit inefficient, protocol that simulates Diffuse; given a message to be diffused, the protocol using RMT, sends
the message to each party in the set of parties running the protocol. On the other hand, it is not hard to establish
that no protocol can simulate RMT given Diffuse. The argument is as follows, and it works no matter how the
protocol using Diffuse may operate. When a party A transmits a message M to party B, it is possible for the
adversary in the Diffuse setting to simulate a “fake” party A that sends a message M ′ 6= M to B concurrently.
Invariably, this will result in a setting where B has to decide which one is the correct message to output and will
produce the wrong message with non-negligible probability. It follows that Diffuse is a weaker communication
primitive: one would not be able to substitute Diffuse for RMT in a protocol setting.

Other models The above models may be extended in a number of ways to capture various real-world consid-
erations in message passing. For instance, in point to point channels, the communication graph may change over
the course of protocol execution with edges being added or removed adversarially, something that may also result
in temporary network partitions. Another intermediate model between point to point channels and diffusion is
to have a diffusion channel with “port awareness”, i.e., the setting where messages from the same source are
linkable, or without port awareness, but where each party is restricted to sending one message per round (see
Section 2.2.2 for the notion of round) and their total number is known, see [Oku05a].

2.2.2 Synchrony

The ability of the parties to synchronize in protocol execution is an important aspect in the design of consensus
protocols. Synchrony in message passing can be captured by dividing the protocol execution in rounds where
parties are activated in some sequence and each one of them has the opportunity to send messages which are
received by the recipients at the onset of the next round. This reflects the fact that in some scenarios, real
world networks messages are delivered most of the time in a timely fashion and thus parties can synchronise the
protocol execution in discrete rounds.

A first important relaxation to the synchronous model is to allow a “rushing adversary” [Can00], i.e., allow
the adversary to control the activation of parties so that it acts last in each round having access to all messages sent
by honest participants before it decides on the actions of the adversarial participants and the ordering of message
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delivery for the honest parties in the next round. This is captured by the functionalities in Figures 2.1 and 2.2. A
second relaxation is to impose a time bound on message delivery that is not known to the protocol participants.
We shall refer to this as the “partially synchronous setting” [DLS88]. The partial synchronous setting is easy
to capture by the functionalities in Figures 2.1 and 2.2 as follows: a parameter ∆ ∈ N is introduced in each
functionality that determines the maximum time a message can remain “in limbo”. For each message that is sent,
a counter is introduced that is initially 0 and counts the number of rounds that have passed since its transmission.
When this counter reaches ∆ the message is copied to the inbox(·) strings for the active participants.

In [DLS88] considers also the eventual synchrony model. In this the synchrony is assumed to hold after a
point in time unknown to the protocol participants. This means that such protocols must not violate safety due
to violations of any timing assumption (i.e., during asynchronous periods), but their liveness is only guaranteed
when the network becomes synchronous.

An even weaker setting than partial synchrony is that of message transmission with eventual message de-
livery, where all messages between honest parties are guaranteed to be delivered but there is no specific time
bound that mandates their delivery in the course of the protocol execution. Note that it is proven that no de-
terministic consensus protocol exists in this setting [FLP85], and the impossibility can be overcome by ran-
domization [Ben83, Rab83, FM97, KK06]. Solutions of more practical relevance for Byzantine consensus rely
on distributed cryptography [CKS05] as prototyped by SINTRA [CP02] or, much more recently, HoneyBad-
ger [MXC+16].

Finally, in the “fully asynchronous setting,” where messages may be arbitrarily delayed or dropped, consen-
sus is impossible. A noteworthy consideration with respect to the network models of Section 2.2.1 is that in the
Diffuse setting the adversary may flood the honest participants’ incoming communication queues/buffers and
thus induce a denial of service attack (the same issue is much easier to deal with in the point-to-point setting,
since parties that overutilize their communication link can be ignored). In order to preserve the ability of the
honest parties to process all messages as required in the message delivery model, a provision to either “dilate”
the round processing time should be allowed as in [GKL15], or impose an ad-hoc bound on the messages sent
by the adversary per round should be made as in [AD15].

2.3 Setup Assumptions

In the context of protocol design, a setup assumption refers to information that can be available at the onset of
the protocol to each protocol participant. Consensus protocols are designed with respect to a number of different
setup assumptions that we outline below.

2.3.1 No Setup

In this setting we consider protocols that parties do not utilize any setup functionality beyond the existence of the
communication functionality. Note that the communication functionality may already provide some information
to the participants about the environment of the protocol; nevertheless, this setting is distinguished from other
more thorough setup assumptions that are described below.

2.3.2 Public-State Setup

A public-state setup is parameterized by a probability ensemble D. For each input size κ, the ensemble D
specifies a probability distribution that is sampled a single time at the onset of the protocol execution to produce
a string denoted by s that is of length polynomial in κ. All protocol parties, including adversarial ones, are
assumed to have access to s. In this setting, the consensus protocol is designed for a specific ensemble D.

The concept of a public-state setup can be further relaxed in a model that has been called “sun-spots” [CPS07],
where the ensemble is further parameterized by an index a. The definition is the same as above but now the proto-
col execution is taken for some arbitrary choice of a. Intuitively, the parameter a can be thought as an adversarial
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influence in the choice of the public string s. In this setting, the consensus protocol is designed with respect to
the ensemble class {Da}a.

2.3.3 Private-State Setup

As in the public state case, a private state setup is parameterized by an ensemble D. For each inputs size
κ and number of parties n, D specifies a probability distribution that is sampled a single time to produce a
sequence of values (s1, . . . , sn). The length of each value si is polynomial in κ. At the onset of the protocol
execution, the ensemble is sampled once and each protocol participant receives one of the values si following
some predetermined order. The critical feature of this setting is that each party has private access to si. Observe
that trivially the setting of private-state setup subsumes the setting of public-state setup.

As in the case of a public-state setup, it is important to consider the relaxation where the ensemble D is pa-
rameterised by a. As before the sampling fromDa is performed from some arbitrary choice of a. It is in this sense
where private-state setup has been most useful. In particular, we can use it to express the concept of a public-key
infrastructure (PKI). In this setting the ensembleD employs a digital signature algorithm (Gen,Sign,Verify) and
samples a value (pki, ski) ← Gen(1κ) independently for each honest participant. For each participant which is
assumed to be adversarial at the onset of the execution, its public and secret key pair is set to a predetermined
value that is extracted from a. The private input si for the i-th protocol participant is equal to (pk1, . . . , pkn, ski),
thus giving access to all parties’ public keys and its own private key.

One may consider more complicated interactive setups, such as for example the adversary choosing a some
how adversarially based on public information available about (s1, . . . , sn), but we refrain from considering
those here.

2.4 Computational Assumptions

The assumptions used to prove the properties of consensus protocols can be divided into two broad categories.
In the information-theoretic (aka “unconditional”) setting, the adversary is assumed to be unbounded in terms of
computational resources. In the computational setting, on the other hand, a polynomial-time bound is assumed.

2.4.1 Information-Theoretic Security

In the information-theoretic setting the adversarial running time is unbounded. It follows that the adversary may
take arbitrary time to operate in each invocation. Note that the protocol execution may continue to proceed
in synchronous rounds, nevertheless the running time of the adversary within each round dilates sufficiently
to accomodate its complete operation. When proving the consensus properties in this setting we can further
consider two variations: perfect and statistical. When a property, Agreement for example, is perfectly satisfied
this means that in all possible executions the honest parties never disagree on their outputs. On the other hand, in
the statistical variant, there are certain executions where the honest parties are allowed to disagree. Nevertheless,
these executions have an exponentially (or, alternatively, negligible) density in a security parameter κ among
all executions. We observe that the statistical setting is only meaningful for a probabilistic consensus protocol,
where the honest parties may be “unlucky” in their choices of coins.

2.4.2 Computational Security

In the computational setting the adversarial running time, and/or the computational model within which the
adversary (and the parties running the protocol) are expressed becomes restricted. We distinguish the following
variants.
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One-way functions A standard computational assumption is the existence of one-way functions. A one-way
function is a function f : X → Y for which it holds that f is polynomial-time computable, but the probability
A(1|x|, f(x)) ∈ f−1(f(x))] is negligible in |x| for any polynomial time bounded program A for x uniformly
random. One-way functions, albeit quite basic, are a powerful primitive that enables the construction of more
complex cryptographic algorithms that include symmetric-key encryption and digital signatures [NY89].

Proof of Work A proof of work (PoW) is a cryptographic primitive that enables a verifier to be convinced that
certain amount of computational effort has been invested with respect to a certain context (e.g., a plaintext mes-
sage or a nonce that the verifier/prover has provided). A number of properties have been identified as important
for the application of the primitive including amortization resistance, sampleability, fast verification, hardness
against tampering and message attacks, and almost k-wise independence [GKP17].

Some variants of PoWs have been shown to imply one-way functions [BGJ+16].
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Chapter 3

Theory Results: Consensus

3.1 Consensus in the Standard Setting

In the traditional network model of point-to-point reliable channels between every pair of parties, the prob-
lem was formulated in [LSP82] considering the information-theoretic setting and the computational (also called
cryptographic, or authenticated) setting. As mentioned above, in the former no assumptions are made about
the adversary’s computational power, while the latter relies on the hardness of computational problems such as
factoring large integers or computing discrete logs (therefore the adversary’s computational power needs to be
restricted), and requires a trusted setup in the form of a PKI. Depending on the setting, some of the bounds on
the problems’ quality measures differ.

3.1.1 Number of Parties

Let n be the total number of parties involved in the execution of a protocol and let t be the number of dishonest
parties. For the information-theoretic setting, Lamport et al. [LSP82] showed that n > 3t is both necessary
and sufficient for the problem to have a solution. The necessary condition is presented in [LSP82] for the
broadcast problem (see [FLM86] for the consensus version of the impossibility result), as the special case of 3
parties (“generals”), having to agree on two values (‘attack’, ‘retreat’), with one of them being dishonest. As
in the information-theoretic setting (with no additional setup) the parties are not able to forward messages in
an authenticated manner, it is easily shown that an honest receiver cannot distinguish between a run where the
sender is dishonest and sends conflicting messages, and a run where a receiver is dishonest and claims to have
received the opposite message, which leads to the violation of the problem’s conditions (Agreement and Validity,
respectively). The general case (arbitrary values of n) reduces to the 3-party case. The protocol presented
in [LSP82] matches this bound (n > 3t), and essentially consists of recursively echoing messages received in a
round while excluding the messages’ senders. (In the first round, only the sender sends messages.) This is done
for t + 1 rounds, at which point the parties take majority of the values received, and go back up the recursion.
t+1 rounds were later shown to be optimal (see below), but the protocol requires exponential (in n) computation
and communication.

Lamport et al. [LSP82] also formulated the problem in the computational setting, where, specifically, there is
a trusted private-state setup (of a PKI), and the parties have access to a digital signature scheme. This version of
the problem has been referred to as authenticated Byzantine agreement. In contrast to the information-theoretic
setting, in the computational setting with a trusted setup the bounds for broadcast and consensus differ: n >
t [LSP82] and n > 2t (e.g., [Fit03]), respectively. The protocol presented in [LSP82] runs in t+ 1 rounds but, as
in the information-theoretic setting, is also exponential; an efficient (polynomial-time) was presented early on by
Dolev and Strong [DS83], which we now briefly describe. In this protocol in the first round the sender digitally
signs and sends his message to all the other parties, while in subsequent rounds parties append their signatures
and forward the result. If any party ever observes valid signatures of the sender on two different messages, then
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that party forwards both signatures to all other parties and disqualifies the sender (and all parties output some
default message). This simple protocol is a popular building block in the area of cryptographic protocols (refer,
however, to Section 3.1.6).

In the computational setting, the original formulation of the problem assumes a PKI. In [Bor96], Borderding
considered the situation where no PKI is available, which he refers to as “local authentication,” meaning that
no agreement on the parties’ keys is provided, as each party distributes its verification key by itself. Borderding
shows that in this case, as in the information-theoretic setting above, broadcast and consensus are not possible if
n ≤ 3t, even though this setting is strictly stronger, as a dishonest party cannot forge messages sent by honest
parties.

Regarding the “strong” version of the problem (the decision value must be one of the honest parties’ input
values), Fitzi and Garay [FG03] showed that the problem has a solution if and only if n > max(3, |V |)t in the
unconditional setting1, where V is the domain of input/output values, and n > |V |t in the computational setting
with a trusted setup, giving resiliency-optimal and polynomial-time protocols that run in t+ 1 rounds.

3.1.2 Round Complexity

Regarding the running time of consensus protocols, a lower bound of t+1 rounds for deterministic protocols was
established by Fischer and Lynch [FL82]; the lower bound was shown for the case of benign (“crash”) failures,
and extended to malicious failures by Dolev and Strong [DS83]. As mentioned above, the original protocols
by Lamport et al. already achieved this bound, but required exponential computation and communication. In
contrast to the computational setting, were a polynomial-time resiliency- and round-optimal were found relatively
soon [DS83], in the information-theoretic setting this took quite a bit longer, and was achieved by Garay and
Moses [GM98]. In a nutshell, the [GM98] protocol builds on the “unraveled” version of the original protocol,
presented and called Exponential Information Gathering by Bar-Noy et al. [BDDS92], applying a suite of “early-
stopping” and fault-detection techniques to prune the tree data structure to polynomial size.

The above t+1-round lower bound applies to deterministic protocols. A major breakthrough in fault-tolerant
distributed algorithms was the introduction of randomization to the field by Ben-Or [Ben83] and Rabin [Rab83],
which, effectively, showed how to circumvent the above limitation by using randomization. Rabin [Rab83], in
particular, showed that linearly resilient consensus protocols in expected constant rounds were possible, provided
that all parties have access to a “common coin” (i.e., a common source of randomness). Essentially, the value of
the coin can be adopted by the honest parties in case disagreement at any given round is detected, a process that
is repeated multiple times. This line of research culminated with the work of Feldman and Micali [FM97], who
showed how to obtain a shared random coin with constant probability from “scratch,” yielding a probabilistic
consensus protocol tolerating the maximum number of misbehaving parties (t < n/3) that runs in expected
constant number of rounds. The [FM97] protocol works in the information-theoretic setting; these results were
later extended to the computational setting by Katz and Koo [KK06], who showed that assuming a PKI and
digital signatures there exists an (expected-)constant-round consensus protocol tolerating t < n/2 corruptions.

Recall that deterministic broadcast protocols in the computational setting with setup tolerate an arbitrary
number (i.e., n > t) of dishonest parties; in contrast, the protocol in [KK06] assumes n > 2t (as it is based
on VSS—verifiable secret sharing [CGMA85]). In [GKKO07], Garay et al. consider the case of a dishonest
majority (i.e., n ≤ 2t), presenting an expected-constant-round protocol for t = n

2 +O(1) dishonest parties (more
generally, expected O(k2) running time when t = n

2 + k), and showing the impossibility of expected-constant-
round broadcast protocols when n− t = o(n).

Regarding strong consensus, the t+ 1-round lower bound also applies to this version of the problem, which
the protocols by Fitzi and Garay [FG03] achieve (as well as being polynomial-time and resiliency-optimal).

1The lower bound was in fact shown by Neiger, who formulated this version of the problem [Nei94].
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3.1.3 Trusted Setup

We already covered this aspect above while describing the protocols achieving the different bounds on the num-
ber of parties; here we briefly summarise it. There is no trusted setup in the unconditional setting, although in
the case of randomized protocols there is the additional requirement of the point-to-point channels being private
in addition to reliable, while the “authenticated” consensus protocols assume a PKI. Related to a trusted setup
assumption, we remark that if a pre-computation phase is allowed in the information-theoretic setting where reli-
able broadcast is guaranteed, then Baum-Waidner, Pfitzmann and Waidner showed that broadcast and consensus
are achievable with the same bounds on the number of parties as in the computational setting, using a tool known
as “pseudo-signatures” [BPW91].

3.1.4 Communication Cost

A lower bound of Ω(n2) on the number of messages (in fact, Ω(nt)) was shown by Dolev and Reischuk for
consensus for both information-theoretic and computational security [DR85]; for the latter, what they showed
was that the number of signatures that are required by any protocol is Ω(nt), resulting in an Ω(nt|σ|) bit com-
plexity (for a constant-size domain), where |σ| represents the maximum signature size. The first information-
theoretically secure protocols to match this bound were given by Berman et al. [BGP92] and independently by
Coan and Welch [CW89]; regarding computational security, the protocol presented by Dolev and Strong [DS83]
requires that many messages.

3.1.5 Beyond Synchrony

The case of partial synchrony introduced in [DLS88], considers the existence of an unknown bound ∆ that
determines the maximum delay of a message that is unknown to the protocol participants.2 As shown in [DLS88],
the resiliency bounds remain unaltered.

In the eventual delivery setting, as mentioned above, deterministic consensus is impossible but it is still
feasible to obtain protocols with probabilistic guarantees. Furthermore, note that it is not possible in this setting
to account for all the honest parties’ inputs since parties cannot afford to wait for all the parties to engage (since
corrupt parties may never transmit their messages and it is impossible to set a correct time-out). In more detail,
without a setup in the information-theoretic setting, it is possible to adapt [FM97] and achieve n/4 resilience
cf. [FM88]. Moreover, by allowing the protocol not to terminate with negligible probability it is possible to
bring the resiliency down to n/3, [CR93, ADH08]. In the private-setup setting, assuming one-way functions, it
is possible to obtain an always terminating protocol with n/3 resiliency, cf. [FM88]. We note that it is infeasible
to go beyond n/3 resiliency (cf. [Can96] where they argue this bound for fail-stop failures) and thus the above
results are optimal in this sense.

3.1.6 Property- vs. Simulation-Based Proofs

As mentioned in Section 2.1.2, consensus and broadcast protocols have been typically proven secure/correct
following a property-based approach. It turns out, as pointed out by Hirt and Zikas [HZ10] (see also [GKKZ11]),
that in the case of adaptive adversaries who can choose which parties to corrupt dynamically, during the course
of the protocol execution (cf. [CFGN96]), most existing broadcast and consensus protocols cannot be proven
secure in a simulation-based manner. The reason, at a high level, is that when the adversary (having corrupted
a party) receives a message from an honest party, can corrupt that party and make him change his message to
other parties. This creates an inconsistency with the ideal process, where the party has already provided his
input to the trusted party/ideal functionality. To be amenable to a simulation-based proof, instead of sending its
initial message “in the clear,” the sender in a broadcast protocol sends a commitment to the message, allowing

2In [DLS88] partial synchrony between the clocks of the processors is also considered as a separate relaxation to the model. In the
present treatment we only focus on partial synchrony with respect to message passing.
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the simulator in the ideal process to “equivocate” when the committed value becomes known in case the party
has been corrupted and the initial value changed [HZ10, GKKZ11].

3.2 Consensus in the Peer-to-Peer Setting

Consensus in the peer-to-peer setting refers to the consensus problem when the available communication model
is peer-to-peer diffusion (cf. Section 2.2.1), a weaker communication primitive compared to point-to-point chan-
nels. This setting arose with the advent of the Bitcoin blockchain protocol, and was formally studied for the
first time in [GKL15]. It is epitomised by an unauthenticated model of communication where no correlation of
message sources across rounds takes place and the total number of parties that participate in the protocol may
be unknown to the protocol participants. Moreover, since the adversary may inject messages in the network,
an honest party cannot infer the number of participants from a message count. Because of this uncertainty, the
consensus properties of termination, agreement and validity hold for honest parties that are participating in the
protocol.

We note that in a precursor model, where there is no correlation of message sources, but the point-to-point
structure is still in place albeit without authentication, Okun showed that deterministic consensus algorithms are
impossible for even a single failure [Oku05b,Oku05a], but that probabilistic consensus is still feasible by suitably
adapting the protocols of [Ben83, FM97]3; the protocol, however, takes exponentially many rounds.

The consensus problem in the peer-to-peer setting has mostly been considered in the computational setting
utilising one-way functions and the proof-of-work primitive.

The first suggestion for a solution was informally described in [AJK05], where it was suggested that PoW can
be used as an identity assignment tool, which subsequently can be used to bootstrap a standard consensus pro-
tocol like [DS83]. Nevertheless, the viability of this plan was never fully analysed until an alternative approach
to the problem was informally described by Nakamoto in an email exchange [Nak08b], where he argued that
the “Byzantine Generals” problem can be solved by a blockchain/PoW approach tolerating a number of misbe-
having parties strictly below n/2. As independently observed in [ML14, GKL15], however, with overwhelming
probability the Validity property is not satisfied by Nakamoto’s informal suggestion.

The blockchain approach suggests to string PoWs together in a hash chain and obtain agreement using a rule
that favors higher concentrations of computational effort as reflected in the resulting hashchains. The inputs to
the consensus are entangled within the PoWs themselves and the final output results from a processing of the
hash chain. The approach was first formalised in [GKL15] where also two constructions were provided that
satisfy all properties assuming a public setup.

Without access to a public setup, it is also possible to obtain a construction based on the results of [AD15]
who were the first to formalise the [AJK05] informal approach of using PoWs to identity assignment. Moreover,
a blockchain-based approach is also possible as shown in [GKLP18].

Using a private setup, it becomes feasible to use primitives such as digital signatures and verifiable random
functions and obtain even more efficient constructions such as the consensus sub-protocol of [Mic16].

3.2.1 Number of Parties

In the convention introduced in [GKL15], each party has a fixed quota of hashing queries that is allowed per
round. As a result, the number of parties is directly proportional to the “computational power” that is present in
the system and the total number of PoWs produced by the honest parties collectively would exceed that of the
adversary assuming honest majority with very high probability.

The main problem in establishing identities using PoW, is that the set of identities as perceived by the honest
partipants in the protocol execution might be inconsistent. This was resolved with the protocol of [AD15] where
PoWs are used to build a “graded” PKI, where keys have ranks. The graded PKI is an instance of a graded
agreement [FM97], or partial consistency problem [CFF+05], where honest parties do not disagree by much,

3Hence, consensus in this setting shares a similar profile with consensus in the asynchronous network model [FLP85].
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according to some metric. Subsequently, it is possible to morph this graded consistency to global consistency
by running multiple instances of [DS83]. This can be used to provide a consensus protocol with resiliency n/2
without a trusted setup.

It is unnecessary though for the parties to reach consensus by establishing identities. In the first protocol
presented in [GKL15], the parties build a blockchain where each block contains a value that matches the input
of the party that produced the block. The protocol continues for a certain number of rounds that ensures that the
blockchain has grown to a certain length. In the final round, the parties remove a k-block suffix from their local
blockchain, and output the majority bit from the remaining prefix. Based on the property called “common prefix”
in [GKL15], it is shown that with overwhelming probability in the security parameter, the parties terminate with
the same output, while using the “chain quality” property, it is shown that if all the honest parties start with the
same input, the corrupt parties cannot overturn the majority bit, which corresponds to the honest parties’ input.
The number of tolerated misbehaving parties in this protocol is strictly below n/3, a sub-optimal resiliency due
to the low chain quality of the underlying blockhain protocol. We note that that the maximum resiliency that
can be expected is also n/2. Optimal resiliency can be reached by the second consensus protocol of [GKL15]
as follows: the protocol substitutes Bitcoin transactions with a type of transactions that are themselves based on
PoWs, and hence uses PoWs in two distinct ways: for the maintenance of the ledger and for the generation of
the transactions themselves. The protocol requires special care in the way it employs PoWs since the adversary
should be incapable of “shifting” work between the two PoW tasks that it faces in each round. To solve this
problem, a special strategy for PoW-based protocol composition is introduced in [GKL15] called “2-for-1 PoWs.”
In the second solution presented in [GKL15] the number of tolerated misbehaving parties is strictly below n/2.

We note that all these protocols come with a hard-coded difficulty level for PoWs which is assumed to be
correlated to the number of parties n. If f is the probability that at least one honest party will produce a PoW in a
round of protocol execution, it holds that f approaches 0 for small n while it approaches 1 for large n. It follows
that the choice of PoW difficulty results in an operational range of values [nL, nR], so that when if n < nL, the
protocol cannot be guaranteed to satisfy validity with high probability while if n > nR, the protocol cannot be
guaranteed to produce agreement with high probability.

Using digital signatures and verifiable random functions (VRFs), or just digital signatures and a hash func-
tion modeled as a random oracle, it is possible to implement the second consensus protocol [GKL15] over an
underlying blockchain protocol that uses a public-key infrastructure as opposed to PoW, and allows for arbitrary
participation such as [PS17] for optimal resiliency of n/2. The idea is as follows: one can use VRFs for each
participant to enable a random subset of elected transaction issuers in each round. The ledger will then incor-
porate such transactions within a window of time following the same technique and counting argument as in the
second consensus protocol of [GKL15].

3.2.2 Running Time

In order to measure the running time that the protocols require in the peer-to-peer setting assuming PoW, one
will have to also take into account that periods of silence, i.e., rounds without any message passing, may also be
required for ensuring the required properties with high probability in κ, a security parameter.

The consensus protocol derived by [AD15] requires O(n) rounds where n is the number of parties. This
can be improved to O(κ), by e.g., using a blockchain-based approach [GKLP18]. In the public-setup setting,
assuming that the number of parties fall within the operational range, the protocols of [GKL15] run in timeO(κ).

It is worth noting the contrast to the approach used in randomized solutions to the problem in the standard
setting (cf. Section 3.1.2), where achieving consensus is reduced to (the construction of) a shared random coin,
and comparable guarantees are obtained after a poly-logarithmic number of rounds in the number of parties. The
probabilistic aspect in the blockchain setting stems from the parties’ likelihood of being able to provide proofs
of work.

In the private setup setting it is possible to improve the running time to expected constant, either using the
protocol of [KK06] for optimal resiliency, or for an even smaller constant deploy the consensus sub-protocol of
Algorand [Mic16] for 1/3 resiliency (while it is claimed that n/2 resilience is also attainable).
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3.2.3 Trusted Setup

The relevant trusted setup assumption in the above protocols include a fresh random string, that can be incor-
porated as part of a “genesis block” in the blockchain protocol setting, or in general as part of the PoWs4. The
objective of this public setup is to prevent a pre-computation attack by the adversary that will violate the relative
superiority of honest parties which would be derived by the honest majority assumption.

Note that protocols that require no trusted setup such as [AD15,GKLP18] take advantage of a special random-
ness exchange phase prior to PoW calculation that facilitates freshness without the need of a common random
string.

It is worth to emphasise the fundamental advantage of the PoW setting compared to other computational
assumptions that have been used for consensus. Specifically, it is known that without a private setup consensus
is not possible with more than n/3 corruptions [Bor96] even assuming digital signatures. The n/3 impossibility
result does not apply since, for instance, proof of work can make it infeasible for the adversary to present
diverging protocol transcripts without investing effort for distinct PoW calculations.

3.2.4 Communication Cost

The total number of transmitted messages in the consensus protocols described above is, in expectation, O(n2κ)
for the case of [AD15, GKLP18] counting each invocation of the diffuse channel as costing O(n) messages. For
the two protocols of [GKL15] the number of messages is O(nκ) in the public setup setting. Assuming a private
setup, [Mic16] can bring this further down to O(n).

We recall that an important difference with randomized consensus protocols in the standard setting is parties
send messages in every round, while in the PoW setting parties only communicate in a round when they are able
to produce a proof of work; otherwise, they remain silent. This also suggests that there may be honest parties
that never diffuse a message and thus it is feasible to drop communication cost to below n2 (with a probabilistic
guarantee), cf. Section 3.1.4.

3.2.5 Property- vs. simulation-based proofs

To our knowledge, there is no simulation-based treatment of consensus in the peer-to-peer setting, however it is
easy to infer a functionality abstracting the problem. The only essential difference is that the actual number of
parties involved in the execution are to be decided on the fly and will be unknown to the protocol participants.

3.3 Ledger Consensus

Ledger consensus (a.k.a. “Nakamoto consensus”) is the problem where a set of servers (or nodes) operate
continuously accepting inputs that are called transactions and incorporate them in a public data structure called
the ledger. Clients are able to read the ledger and submit transactions to be added to it. The purpose of ledger
consensus is to provide a unique view to the ledger for the clients.

The properties that a ledger consensus protocol must satisfy are as follows:

– Consistency: This property mandates that if a client queries an honest node’s ledger at round t1 and
receives the response L1, then a client querying an honest node’s ledger at round t2 ≥ t1 receives a
response L2 that satisfies L1 � L2, where � denotes the standard prefix operation.

– Liveness: If a transaction tx is given as input to all honest nodes continuously for a certain number of
rounds denoted by u, and a client queries any honest node’s ledger after these u rounds, then the node
responds with a value L that includes tx.

4Alternatively, the protocols would consider as valid any chain that extends the empty chain, and where the adversary is not allowed
any pre-computation.
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In the traditional distributed systems literature, such a problem is often referred to as state machine repli-
cation [Sch90]. Consistency ensures that parties have the same view of the log of transactions, while Liveness
ensures the quick incorporation of transactions.

Reducing ledger consensus to consensus. Given a consensus protocol it is tempting to apply it in sequential
composition in order to solve ledger consensus. The reduction indeed holds but some special care is needed.
First let us consider the case where no setup is available. The construction in the synchronous network model is
as follows. First, suppose that we have at our disposal a consensus protocol that satisfies Agreement, (Strong)
Validity, and Termination after u rounds. The protocol has all nodes collect transactions and then run the consen-
sus protocol with the set of transactions as their input. When the protocol terminates after u rounds, the nodes
assign an index to the output (call it the i-th entry to the ledger) and move on to the next consensus instance. It
is easy to see that Consistency is satisfied because of Agreement, while Liveness is satisfied with parameter u
because of Strong Validity and Termination.

It is worth noting that “plain” Validity by itself is not enough, since a ledger protocol is supposed to run
for any given set of transactions and as a result it is possible that no two honest nodes would ever agree on a
set of inputs. In this case, Validity might just provide that honest parties’ agree on an adversarial value, which
might be the empty string. As a result the ledger would be empty and Liveness would be violated. However
it is possible to deal with this problem without resorting to the full power of strong validity. In particular, it
is sufficient to consider a variant of consensus where each party has an input set Xi and the joint output set S
satisfies that Xi ⊆ S. We note that such a “union” consensus protocol can be implied directly by interactive
consistency, [PSL80], and it has also recently considered explicitly as a consensus variant, [DG17].

Let us now comment how the reduction can be performed under different setup and network assumptions.
First, if a setup assumption is used, observe that the above reduction requires the availability of the setup every u
rounds. Given this might be impractical, one may consider how to emulate the sequence of setups using a single
initial setup. This approach is non-black-box on the underlying protocol and may not be straightforward. For
instance, when sequentially composing a PoW-based consensus protocol that relies on a public setup, the security
of the protocol may non-trivially rely on the unpredictability of the i-th setup, during the execution of the first
i instances. Techniques related to sequential composition of a basic building block protocol have appeared in a
number of ledger protocols, including [KRDO17, BPS16, GHM+17]. Regarding network aspects, we observe
that the reduction can proceed in essentially the same way in the peer-to-peer setting as in the point-to-point
setting.

3.3.1 Number of Parties

As in the case of the consensus problem, assuming no other identity infrastructure, each party has a fixed quota
of hashing queries that it can perform to a hash function per unit of time and thus the number of parties is directly
proportional to the total computational or hashing power that is available. In this setting, first [GKL15] showed
that ledger consensus can be achieved when the number of corrupted parties is strictly below n/2. This bound
was also preserved in the partially synchronous setting, as shown by Pass et al. [PSS17]. With respect to lower
bounds, it is not difficult to see that n/2 is a tight bound.

In this context, the relevant concept of “sporadic participation” was put forth in [PS17], which in turn is
related to models that have been considered in other protocol settings such as fault-tolerant distributed computa-
tion (see e.g., “omission failure” [Lyn96]) and secure multiparty computation [HLP11]. In this scenario in some
sense the parties are subject to two types of faults, Byzantine and benign, such as “going to sleep,” but adversar-
ially scheduled. In the latter type, the parties cease participating in the protocol execution. The parties that have
been offline can recover and rejoin the protocol (with potentially an outdated state). This type of corruption is
cast as “sleep” in [PS17] and the question is posed whether it is possible to perform ledger consensus in a setting
where the number of sleep corruptions exceeds n/2. Assuming a setting where the adversary gets t Byzantine
corruptions and s sleep corruptions it is shown that ledger consensus can be achieved as long as t is strictly
bounded by (n − s)/2, i.e., the number of sleep corruptions may be larger than n/2. It is interesting to point
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out that even though the results of [GKL15,PSS17] are not explicitly dealing with sleep corruptions the security
arguments can be directly ported to this setting by assuming as before that the number of malicious parties are
less than (n− s)/2.

With respect to lower bounds, in the case of sleep corruptions the bound can be generalized to (n − s)/2;
see [PS17] for a formal proof.

The above results refer to a static setting where the number of parties are fixed throughout the execution.
The setting where the population of parties running the protocol is dynamically changing over time with the
environment introducing new parties and deactivating parties that have participated has been considered for
ledger consensus for the first time in [GKL17]. The main result is that ledger consensus can be achieved in
the proof-of-work setting, assuming an honest majority; expectedly, honest majority here has to be restated by
considering the number of parties as they change over time: assuming ni are the active parties at time unit i, it
holds that the number of adversarial parties is bounded away from ni/2. Even though the sleep corruption setting
has not been explicitly considered here, it is expected that it could be applied without major modifications, and
in such case, the corresponding bound would be amended to (ni − si)/2 where si equals the number of parties
that have been subjected to a sleep corruption at time unit i. A dynamic setting of parties was also considered
in [KRDO17,BPS16,GHM+17], providing a similar type of results under the assumption of an initial public-key
directory with honest “stake” majority. In [BGK+18] the authors consider a more refined, UC-based setting, of
dynamic availability (see 4.3.2 for more details).

3.3.2 Transaction Processing Time

Contrary to consensus, the running time of the protocol is not immediately relevant, as a ledger consensus proto-
col is a protocol that is supposed to be running over an arbitrary, potentially long, period of time. Nevertheless, a
related measure is the length of time that it takes for the system to insert a certain transaction in the log maintained
by the participants.

This relates to the parameter u introduced as part of the Liveness property, which determines the number of
rounds that need to pass in the execution model for a transaction to be included in the log. Observe that Liveness is
only provided for transactions that are produced by honest participants or are otherwise unambiguously presented
to the honest parties running the protocol.

In this setting we observe that [GKL15] provides a ledger with processing time O(κ) rounds of interaction
where κ is the security parameter. This result is replicated in the partially synchronous setting, where processing
time takes O(κ∆) rounds, and where ∆ is the maximum delay that is imposed on message transmission.

The above results assume the adversarial bounds consistent with honest majority which are tight. Considering
a weaker adversarial setting it is possible to improve Liveness, as recently shown in [PS18], where it is shown
that processing time can be dropped toO(1) rounds, assuming an honest super-majority (adversary strictly below
n/4) and a certain specific party called the accelerator to be honest.

3.3.3 Trusted Setup

Ledger consensus can be achieved in the public-state or private-state setup setting. The results operating in the
former setting are [GKL15, PSS17, GKL17], whereas the results consistent with the latter are [PS17, KRDO17,
BPS16,GHM+17]. In the absence of any trusted setup it has been shown that it is possible to “bootstrap” a ledger
consensus protocol from “scratch,” either directly [GKLP18] or via setting up a public-key directory using proofs
of work [AD15]. Note that these protocols work without any setup, nevertheless, they do contain hardcoded
information that determines the difficulty level of the underlying proof of work primitive that is employed. In the
case that the actual number of parties present in the protocol execution substantially deviates from the estimation
that is implied by the difficulty level, the protocol security degrades and it can dissipate entirely.

An important further consideration between public setup and private setup is that, in the peer-to-peer setting,
the former represents what typically is consistent with the so-called persmissionless setting, while the latter is
consistent with the so-called permissioned setting. This follows from the fact that anyone that has access to the
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Figure 3.1: Ledger consensus tree of protocols.

peer-to-peer channel is free to participate in the protocol, if no setup or a public setup is assumed. On the other
hand, in the private setup setting, a higher level of permissioning is implied: the parties that are eligible to run
the protocol need to get authorised either by the setup functionality so they receive the private information that
is related to the protocol execution, or, alternatively, interact with the parties that are already part of the protocol
execution so they can be inducted.

3.3.4 Beyond Synchrony

The setting of partial synchrony for ledger consensus was first considered in [PSS17]. The analysis of [GKL15]
carries to the partial synchronous setting and it can be shown that ledger consensus is achieved in the partial
synchronous setting with public setup assuming honest majority in terms of computational power.
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Chapter 4

Notable Systems

4.1 PoW-based Ledgers

Chapter 3 discussed Nakamoto’s consensus protocol that relies on proofs of work to guarantee consistency be-
tween potentially different local copies of a distributed ledger. In this section we give a high-level overview of
famous distributed ledgers that rely on this consensus protocol.

4.1.1 Bitcoin

Bitcoin is a cryptocurrency designed by Satoshi Nakamoto [Nak08a] for peer-to-peer (P2P) networks.

High-level overview. A user in Bitcoin can have multiple unlinked public keys of a signature scheme that
correspond to digital wallets. A user makes a payment (called transaction) transferring coins from one of his
public keys (corresponding to a wallet with enough coins) to other public keys. In order to make such a payment
valid the user signs the transaction using the secret key associated to his public key.

Some special users called miners are in charge of verifying transactions. Once a transaction is successfully
verified by a miner, she adds the transaction to a block. As soon as the miner finishes the procedure to generate
a new block she announces it in the Bitcoin network hoping that it will be confirmed by other miners. Indeed,
miners receiving announcements of new blocks check their correctness and then append them to their local copies
of a public decentralized ledger called blockchain. A miner that proposes a block that is later on added to the
blockchain receives a reward.

The blockchain is therefore a sequence of blocks where each block refers to the previous one, except the
very first block that is called the genesis block. The consistency between potentially different local copies of a
blockchain is implemented using Nakamoto’s consensus protocol (see Chapter 3).

The output of a transaction is the amount of coins sent to a Bitcoin wallet and is called “unspent transaction
output” (UTXO). In Bitcoin the balance of a wallet is computed by summing up all UTXOs sent to the wallet
that have not been spent yet.

Details on Bitcoin blockchain. A block in Bitcoin contains: 1) a reference to the previous block (i.e., the
hash value of the previous block in the blockchain (hpb)); 2) a set of transactions; 3) the hash value of the
transactions belonging to the block (htx)1. A solution to a PoW puzzle consists of a value called nonce s.t.
H(hpb||htx||nonce) < target, where H is a cryptographic hash function2 and target is a 256-bit number that
is known by all the miners of the Bitcoin network. Assuming that the cryptographic hash function behaves as a
random oracle, there is no way to solve the puzzle better than brute-force trying all possible values of the nonce

1To be more precise, the transactions are organized in a Merkle tree and the root of the Merkle tree contributes to form the challenge
for the PoW puzzle.

2Bitcoin uses SHA-256 as cryptographic hash function.
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until a value that satisfies the above equation is found. The difficulty of finding a solution for a PoW puzzle
depends on the target value. Indeed, for a lower value of the target there exists a smaller number of possible
solutions of the PoW puzzle, therefore finding a solution becomes more difficult. In Bitcoin every 2016 blocks
the users update the target value in order to make the PoW puzzle more or less difficult. In this way it is possible
to control the hardness to solve a PoW puzzle and in turn the time to generate a new block. In Bitcoin a new
block is generated roughly every 10 minutes and the hardness of the PoW puzzle is adjusted to maintain this time
interval while the overall computational power of the miners changes.

Security. The consistency of the blockchain of Bitcoin (and in turn the double-spending prevention) relies on
the assumption that honest miners have the majority of the computational power.

In literature various works formalize and study the security of Bitcoin, see [GKL15, PSS17, BMTZ17,
GKL17]. Recently it has been shown that a rational miner (i.e., a miner that behaves to maximize his utility)
ends up behaving as an honest miner because this strategy gives him the best utility. This was formally proved
in [BGM+18], that also takes into account previous attacks on Bitcoin (e.g., the selfish-mining attack [ES14]) at
backbone level (i.e., assuming that miners are only interested in maximizing their revenues by mining).

DoS attacks are in general possible by generating a huge amount of transactions. The existence of transaction
fees strongly mitigates such issue. A transaction fee corresponds to some coins transferred by the user that
proposes a transaction to the miner. Notice that at some point the actual reward for miners will consist of
transactions fees only since the minting of coins produced by the generation of the blocks reduces over the time.

4.1.2 Ethereum

Ethereum is a decentralized platform based on a P2P network that runs programs called contracts. It was pro-
posed by Vitalik Buterin [But13].

High-level overview. A contract is run on every node of the Ethereum network and can compute functions
with various purposes (e.g., data storage, coin transfers). More specifically, a contract is a deterministic program
and is defined via a Turing-complete bytecode language, called EVM bytecode [But13].

A user requesting the execution of a smart contract must pay some coins called ethers. At a very-high level
a user in Ethereum can request three possible types of operations, called transactions, through one of her public
keys corresponding to digital wallets: (i) creation of a new contract; (ii) execution of a function of a contract;
(iii) transfer of ethers to contracts or to other users.

Unlike Bitcoin that adopts UTXO, in Ethereum each public key has a balance that is divided in debits and
credits. The difference between credits and debits must always be non-negative, and therefore a transaction that
would create a negative balance is refused. To prevent double spending in Ethereum each account is associated
to a value called account nonce. Every time an user creates a new transaction the corresponding account nonce is
incremented by one and added to the transaction. An attempt to spend twice the same coins requires to use twice
the same nonce, but in this case only one of two transactions with the same nonce will be accepted, therefore
avoiding the double spending.

The UTXO model is more scalable than the balance model since multiple UTXOs can be processed at
the same time. Moreover the UTXO model does not require the management of additional information (like
account nonce) to prevent double spending. On the other hand the balance model is more intuitive and easier
to manage for developers. Furthermore, the balance model is more efficient since a transaction can be validated
by checking the balance of the sending account only. This contrasts with the UTXO model where instead all
previous transactions concerning the same wallet must be checked.

The blockchain and the consensus protocol. Ethereum inherits from Bitcoin several mechanisms to process a
transaction. In particular, transactions are memorized in a block by a miner that at some point announces a block
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to other miners who verify its validity and then add it to the blockchain. Similarly to Bitcoin, the consistency is
preserved by relying on proofs of work.

Ethereum decreases the time needed to create a new block using the following mechanism. When two blocks
are announced by two different miners at the same time just one of them is added in the blockchain. However,
unlike Bitcoin, the block that is not successfully added is not discarded, and can be added later. The miners that
create or reference this type of block are also rewarded. As a result, in Ethereum a new block is added to the
blockchain every 14/15 seconds.

Security. Being based on proofs of work, the unforgeability of the blockchain of Ethereum’s relies on the
assumption that the majority of the computational power of the miners is used honestly. Transaction fees defeat
DoS attacks and are calculated on the amount of resources (i.e., Gas) needed to compute the transaction. In
more details, the “gas” is an internal measure of Ethereum that is used to estimate the computational resources,
bandwidth and storage required to compute a transaction.

In Ethereum the contracts are published in the blockchain in an immutable way, therefore it can be very
difficult to fix possible issues of the contracts. One of the most famous attacks exploiting the vulnerability of
contracts is the DAO attack [Sie16]. After this attack an upgraded version of the Ethereum system has been
released (hard-fork) in order to nullify the effects of the transactions involved in the attack. The DAO attack was
just an example of the attacks that have been mounted to steal coins from the contracts, there are several other
cases that can be found in the literature [LJC+18, ABC17].

4.2 Ledgers Based on Byzantine-Fault Tolerance (BFT)

4.2.1 BFT Consensus Protocols

Many distributed ledger systems realizing permissioned blockchains rely on classical protocols for consensus
or state-machine replication. Their defining characteristic is to rely on distinct node identities and a resilience
assumption (typically) stated in terms of a number of correct nodes. These protocols are usually referred to as
Byzantine-fault tolerant (BFT) consensus. The most prominent protocol in this model, and the one that lended
it the name, is Practical Byzantine Fault Tolerance (PBFT) by Castro and Liskov [CL02]. PBFT can be un-
derstood as an extension of the Paxos [Lam98]/Viewstamped Replication [OL88] protocol family for consensus
tolerating crashes [Lam01, Lis10, Cac09]. In a system with n nodes, PBFT and its variants tolerate f < n/3
Byzantine-faulty nodes, which is optimal. BFT consensus works in the so-called partial or eventual synchrony
model [DLS88] discussed in Chapter 2, where synchrony is assumed to hold after a point in time unknown to the
protocol participants.

After the publication of the PBFT paper in the computer-systems research literature, many groups and authors
in this field followed up and presented BFT consensus protocols and systems during the years 2000-2010. The
comprehensive paper by Aublin et al. [AGK+15] summarizes many of them and provides a modular way to
understand them and to construct many further protocols.

Only very few actual systems that implement PBFT or one of its variants have been produced before the inter-
est in permissioned blockchains surged around 2015 [Swa15]. BFT-SMaRt [BFT18] is the most complete project
of this kind and available as open source, initiated by Bessani et al. [BSA14, SB12]. There is widespread agree-
ment today that BFT-SMaRt is the most advanced and most widely tested implementation of a BFT consensus
protocol available. Experiments have demonstrated that it can reach a throughput of about 80’000 transactions
per second in a LAN with 4 nodes [BSA14], degrading with growing number of nodes to about 55’000 transac-
tions per second for 10 nodes, and provides very low latency overhead in a WAN [SB15].

4.2.2 Blockchain systems with BFT and BFT-like consensus

This section presents a list of blockchain systems that aim at using BFT consensus. We only describe a small,
subjective selection of the plethora of protocols and systems that have been proposed by players in the vibrant
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blockchain industry.

Hyperledger Fabric. Hyperledger Fabric [Hyp18a] is a platform for distributed ledger solutions, written in
Golang and with a modular architecture that allows multiple implementations for its components. Following
“preview” releases (v0.5 and v0.6) in 2016, whose architecture [Cac16] directly conforms to state-machine repli-
cation, a different and more elaborate design was adopted later for version 1. This revised architecture [ABB+18]
separates the execution of smart-contract transactions (in the sense of validating the inputs and outputs of a
program) from ordering transactions for avoiding conflicts (in the sense of an atomic broadcast that ensures
consistency).

The consensus protocol up to release v0.6 was a native implementation of PBFT [CL02]. In version 1.0
(released during 2017) the ordering service responsible for conflict-avoidance is provided by an Apache Kafka
cluster [Apa18]. In the form of an early prototype, the PBFT protocol provided by the BFT-SMaRt toolkit has
been integrated in Fabric as an ordering service as well [SBV17]. A native implementation of the ordering
service using PBFT is currently under development and targeted for release in 2018.

Tendermint. Tendermint Core [Ten18] implements a variant of PBFT [CL02]. In contrast to PBFT, where the
client sends a new transaction directly to all nodes, the clients in Tendermint disseminate their transactions to the
validating nodes using a gossip protocol. In addition, the protocol entails the continuous rotation of the leader.
Namely, the leader is changed after every block, a technique first used in BFT consensus space by the Spinning
protocol [VCBL09]. This means that Tendermint embeds aspects of PBFT’s view-change mechanism into the
common-case pattern.

Hyperledger Indy. Hyperledger Indy is a distributed ledger platform, purpose-built for decentralized identity
management [Hyp18b]. It provides tools for managing independent digital identities rooted on blockchains and
focuses on the use of privacy-preserving cryptographic technologies.

In its current form, Hyperledger Indy contains the Plenum Byzantine Fault Tolerant Protocol, which follows
a BFT protocol called Redundant Byzantine Fault Tolerance (RBFT) developed by Aublin et al. [AMQ13]. RBFT
departs from PBFT in the following way. PBFT uses a special node, called the “primary,” for indicating to other
nodes the order in which requests should be processed. In order to avoid that the primary becomes a bottleneck,
RBFT executes multiple instances of the protocol simultaneously, a “master” instance and one or more “backup”
instances. All the instances order the requests, but only the requests ordered by the master instance are actually
executed. Hence the protocol adds redundancy in a way that differs from PBFT.

Kadena/Juno. Juno from kadena [Kad16] is a platform for running smart contracts that has been developed
until about November 2016 according to its website. Juno claims to use a “Byzantine Fault Tolerant Raft”
protocol for consensus and appears to address the standard BFT model with n nodes, f < n/3 Byzantine
faults among them, and eventual synchrony [DLS88] as timing assumption. Later Juno has been deprecated
in favor of a “proprietary BFT-consensus protocol” called ScalableBFT [Mar16], which is “inspired by the
Tangaroa protocol” and optimizes performance compared to Juno and Tangaroa. The whitepaper cites over 7000
transactions per second (tps) throughput on a cluster with size 256 nodes.

The design and implementation of ScalableBFT are proprietary and not available for public review. It is
claimed to use Tangaroa, a BFT protocol sketch floating on the web, which is flawed, however [CV17]. The
soundness of this protocol therefore remains an open question.

Symbiont Assembly. Symbiont Assembly [Sym18] is a proprietary distributed ledger platform. The company
that stands behind it, Symbiont, focuses on applications of distributed ledgers in the financial industry, providing
automation for modeling and executing complex instruments among institutional market participants.

Assembly implements resilient consensus in its platform based on the BFT-SMaRt toolkit [BSA14]. How-
ever, Symbiont uses its own reimplementation of BFT-SMaRt in a different programming language; it reports
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performance numbers of 80’000 transactions per second (tps) using a 4-node cluster on a LAN. This matches the
throughput expected from BFT-SMaRt and similar results in the research literature on BFT protocols [AGK+15].

Chain. The Chain Core platform [Cha18] is a generic ledger infrastructure for an institutional consortium to
issue and transfer financial assets on permissioned blockchain networks. The Federated Consensus [Cha17]
protocol of Chain Core is executed by the n nodes that make up the network. One of the nodes is statically
configured as “block generator.” This approach, however, provides only a rudimentary form of consensus, much
weaker than BFT consensus and much easier to implement. In particular, the static block generator can be seen
as the “leader” in a PBFT-style consensus protocol. To the extent visible in the published documents, Chain Core
has no provisions for tolerating a faulty block generator, i.e., if that node misbehaves, it could violate safety or
liveness of the system and manual restart would be needed.

Chain is mentioned here as only one example of many more protocols that aim at implementing BFT con-
sensus, but fail to do so. Cachin and Vukolic [CV17] discuss some of them.

Corda. Corda [Cor18] is a distributed-ledger platform that is targeted at asset transfers and departs significantly
from the design of a blockchain in that there is not a single representation of the ledger that is shared between
all nodes. Instead, at each point in time, each asset is associated with one notary that is required to participate
in asset transfers and also prevents double spending; the participants in the protocol for transferring an asset
are the old and new owner of the asset and the notary. Notaries can in turn be instantiated by a single node,
or a crash-fault tolerant or even Byzantine-fault tolerant protocol, where the implementation of the latter one
is based on BFT-SMaRt [BSA14]. Corda natively supports so-called notary-change transactions, in which an
asset is transferred from the custody of one notary to another, and which correspond to cross-chain transactions
in blockchain systems.

Ripple. The Ripple blockchain [Rip18] (i.e., the “XRP Ledger” that holds the corresponding cryptocurrency)
and its consensus protocol [SYB17] introduced the idea of flexible trust assumptions, which go beyond the typical
BFT model in the sense that each participating node declares a list of nodes that it subjectively trusts. In contrast,
the “trust sets” of standard BFT systems are global and must be the same for all nodes. The Ripple protocol
itself is not based on the research literature; an independent investigation showed that the original specification
was flawed [AKM+15]. A recent analysis [CM18], by authors from Ripple, reveals furthermore that it contains
unnecessary steps and violates safety whenever the trust sets of nodes diverge. There are many claims in the
blockchain industry that the Ripple protocol implements BFT consensus, but these works demonstrate that this
view is wrong.

Stellar. The Stellar blockchain [Ste18] grew out of Ripple and uses a protocol with a similar goal [Maz16]:
Each node declares on its own which other nodes it trusts, instead of a global assumption on which node collu-
sions the protocol tolerates.

Examples in the documentation and the white paper [Maz16, Fig. 3] suggest the use of hierarchical structures
with different groups organized into multiple levels, where a different threshold may exist for each group (but
the “threshold should be 2/3 for the top level”).

At this time, the exact guarantees of the Stellar consensus protocol are not properly understood in the re-
search literature. Determining the similarities and differences between Stellar’s “quorum slices” and the generic
Byzantine Quorum Systems of Malkhi and Reiter [MR98] for Byzantine consensus is left open.

Antshares/NEO. The project formerly known as Antshares has rebranded itself to NEO in 2017 [NEO18]. It
claims to use a delegated Byzantine Fault Tolerance (dBFT) protocol for consensus. No independent or peer-
reviewed description of the protocol is currently available.
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4.3 Proof of Stake Ledgers

4.3.1 Proof-of-Stake Protocols

The design of proof-of-stake blockchain protocols was identified early on as an important objective in blockchain
design; a proof-of-stake blockchain substitutes the costly proof-of-work component in Nakamoto’s blockchain
protocol [Nak08b] while still providing similar guarantees in terms of transaction processing in the presence of
a dishonest minority of users, where this “minority” is to be understood here in the context of stake rather than
computational power.

Proof-of-stake protocols typically possess the following basic characteristics. Based on her local view, a
party is capable of deciding, in a publicly verifiable way, whether she is permitted to produce the next block.
Assuming the block is valid, other parties update their local views by adopting the block, and proceed in this way
continuously. At any moment, the probability of being permitted to issue a block is proportional to the relative
stake a player has in the system, as reported by the blockchain itself.

A particularly challenging design aspect is that the above probabilistic mechanism should be designed so
that the adversary cannot bias it to its advantage. As the stake shifts, together with the evolving population of
stakeholders, so does the honest majority assumption, and hence the function that appoints stakeholders should
continuously take the ledger status into account.

The idea of proof-of-stake protocols has been discussed extensively in the bitcoin forum [For]. The manner
that a stakeholder determines eligibility to issue a block is always publicly verifiable and the proof of eligibility
is either computed publicly (via a calculation that is verifiable by repeating it) or by using a cryptographic
mechanism that involves a secret-key computation and a public-key verification.

4.3.2 Proof-of-Stake Blockchain Systems.

The first example of the former approach (where the proof of eligibility is publicly computed) appeared in PP-
Coin [KN12], and was followed by others including Ouroboros and Snow White [BGM16, KRDO17, BPS16];
while the first example of the latter approach (that involves a secret-key computation and a public-key verifi-
cation) appeared in NXT [Com14] and was then also used elsewhere, most notably in Algorand [Mic16]. The
virtue of the latter approach is exactly in its potential to control adaptive corruptions: due to the fact that the
adversary cannot predict the eligibility of a stakeholder to issue a block prior to corrupting it, she cannot gain an
advantage by directing its corruption quota to specific stakeholders. Nevertheless, none of these previous works
isolated explicitly the properties of the primitives that are required to provide a full proof of security in the setting
of adaptive corruptions. Injecting high quality randomness in the PoS blockchain was proposed by Bentov et
al. [BLMR14, BGM16], though their proposal does not have a full formal analysis.

Ouroboros. The Ouroboros proof-of-stake protocol [KRDO17] is provably secure in a corruption model that
excludes fully adaptive attacks by imposing a corruption delay on the corruption requests of the adversary.

Snow White. The Snow White proof-of-stake [BPS16] is the first to prove security in the ∆-semi-synchronous
model but—as in the case of Ouroboros—adopts a weak adaptive corruption model.

Algorand. This protocol ( [GHM+17]) provides a proof-of-stake ledger that is adaptively secure. Algorand
runs a Byzantine agreement protocol for every block and achieves adaptive-corruption security via a novel,
appealing concept of player-replaceability. However, Algorand is only secure against a 1/3 adversary bound;
and while the protocol itself is very efficient, it yields an inherently slower block production rate compared
to an “eventual consensus” protocol (like Bitcoin, Snow White, and Ouroboros). In principle, proof-of-stake
blockchain protocols can advance at the theoretical maximum speed (of one block per communication round),
while protocols relying on Byzantine agreement, like Algorand, would require a larger number of rounds to settle
each block.
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Sleepy consensus. The sleepy model of consensus [PS17] puts forth a technique for handling adaptive corrup-
tions in a model that also encompasses fail-stop and recover corruptions; however, the protocol can be applied
directly only in a static stake (i.e., permissioned) setting.

Ouroboros Praos. In a recent work David et al. propose “Ouroboros Praos” [DGKR18]. In Ouroboros Praos,
deciding whether a certain participant of the protocol is eligible to issue a block is decided via a private test that
is executed locally using a special verifiable random function (VRF) on the current time-stamp and a nonce that
is determined for a period of time known as an “epoch”. A special feature of this VRF primitive is that the VRF
must have strong security characteristics even in the setting of malicious key generation: specifically, if provided
with an input that has high entropy, the output of the VRF is unpredictable even when an adversary has subverted
the key generation procedure. In [DGKR18] such VRF functions is called “VRF with unpredictability under
malicious key generation”. In a nutshell, the protocol provided in [DGKR18] represents a “robust transaction
ledger”. That is, a ledger that enjoys consistency and liveness (see Sec. 3.3). Moreover this protocol is proved
secure in the ∆-semisynchronous setting with full adaptive corruptions.

Ouroboros Genesis. In a follow-up work, Badertscher et al. [BGK+18] propose “Ouroboros Genesis”. This
work provides a blockchain protocols with a novel chain selection rule. The rule enables new or offline parties
to safely (re-)join and bootstrap their blockchain from the genesis block without any trusted advice (such as
checkpoints) or assumptions regarding past availability. Indeed such a blockchain protocol can “bootstrap from
genesis”. Moreover the authors prove that the proposed protocol is secure in the Global UC model against a
fully adaptive adversary controlling less than half of the total stake. The model considered in [BGK+18] allows
adversarial scheduling of messages in a network with delays and captures the dynamic availability of participants
in the worst case. This protocol is effectively independent of both the maximum network delay and the minimum
level of availability, both of which are run-time parameters.
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Chapter 5

Privacy-Preserving Techniques and Systems

Anonymity in Bitcoin Although Bitcoin users are not required to provide their real-world credentials to per-
form operations on the ledger, their anonymity is severely limited. Every user has a set of addresses picked
by herself. This allows for some amount of anonymity – no real names are revealed in transactions as an ob-
server sees only addresses and money flow between them. Unfortunately, thoughtful analysis of transactions
allows to (almost fully) deanonymise Bitcoin users, see e.g. [GKRN17, AKR+13, RH11, RS13]. To address
this issue, alternatives to Bitcoin protocol have been proposed. Here some of them are presented: confiden-
tial assets [PBF+17], privacy-preserving auditing [NVV17] and two examples of the most popular anonymous
cryptocurrencies, i.e. Monero [Noe15] and Zerocash [BCG+14].

5.1 Confidential Assets

In the Bitcoin network, each node maintains a public leader which includes the set of UTXOs and the nodes
update the set after each new transaction. Since the set of UTXOs and all their past changes are public, it is
possible to monitor and analyze all payments of a target address. However, an address cannot be linked to an
identity directly, but by monitoring long history of some addresses, there might be some leakages about owners
of addresses which will lead to violate privacy of end-users.

In order to deal with such privacy concerns, there have been various proposals. CoinJoin is one of the
proposed solutions which aims to hide structure of transactions [Max15]. Intuitively, CoinJoin allows users to
combine the transactions interactively and eliminate links from outputs of transactions to inputs and vice versa.
But still in transactions, the values of the transferred coins are revealed which might leak information about users
in some cases (unless output of all transactions are equal and indistinguishable from each other).

Recently, Poelstra et al. [PBF+17] extended an approach to provide more anonymous transactions by blinding
values of UTXOs, but still with possibility to check that the sum of input coins equals to sum of spent coins
(outputs plus transaction fee). The proposed approach is called the confidential transactions which blinds the
value of coins in UTXOs with a homomorphic perfectly hiding commitment. Recall that if a commitment
scheme is additively homomorphic, it allows to multiply two commitments (e.g. C1 = Com(m1; r1) and C2 =
Com(m2; r2)) and obtain a new commitment to the sum of the two already committed values (e.g. Cnew =
C1 · C2 = Com(m1 + m2; r1 + r2). The perfectly hiding property guarantees that no receiver (adversary)
learns any information about the committed value from the commitment. For confidential transactions, Pedersen
homomorphic commitments are used.

With confidential transactions, each transaction contains a homomorphic commitment of the transferred value
which blinds the amount. Since the values of transactions are integers and the commitment scheme is homomor-
phic over a finite ring there might be an issue of overflow. Poelstra et al. deal with this with a range proof to
show that the committed amount is in a particular range (e.g. [A,B]). Their range proof for commitments over
slot [0,mn − 1] is a slightly modified version of Schoenmakers [Sch05] range proof scheme that is based on
bit-decomposition approach which expresses numbers in base m and proves that each digit lies in [0,m− 1].
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The concept of confidential transactions is also extended to confidential assets, which supports several type
of asset (e.g. Bitcoin, USD) just in one transaction while providing confidentially by blinding amount and type
of assets (tag value). In brief, the extension assigns a blind asset tag to each output and Pedersen commitment
used in transactions commits to both amount of coins and assets tags.

Briefly, there are two main differences between confidential and standard Bitcoin transactions that can be
summarized as follows. First, all plain values in the standard Bitcoin transactions are blinded with Pedersen
commitment scheme in confidential transactions. Second, in the confidential transactions, the transaction fee is
determined explicitly and using homomorphic property of the commitment scheme it should be checked that the
differences of inputs minus outputs commits to the value of transaction fee.

5.2 Monero

Monero [Noe15] is a proof-of-work cryptocurrency that focuses on providing transaction privacy. In particular,
it claims to hide the sender, the receiver, and the amount of currency in a transaction. However, some of those
properties have been found to be partly vulnerable to network analysis attacks [KFTS17,MSH+18]. The original
Monero protocol was based on the privacy-preserving CryptoNote [vS13] protocol which used one-time keys
and a cryptographic tool called ring signature [RST01] to hide senders and receivers of transactions, but the
amount was still public. In the beginning of 2017 Monero adopted the Ring Confidential Transaction (Ring CT)
protocol [Noe15] which combines the CryptoNote protocol with ideas from confidential transactions [Max15]
used in Bitcoin. In particular, this also allows to hide the amounts in transactions.

To remind, transactions in Bitcoin contain inputs and outputs. Inputs refer to outputs of a previous transac-
tions and outputs specify value and to whom to transfer that value by a public key. In a correct transaction, the
sum of the input values is (at least) as big as the sum of output values. Moreover, each transaction needs to be
signed by the owner of the input transactions. Clearly, Bitcoin does not guarantee any of three above mentioned
privacy properties.

5.2.1 Preliminaries

We introduce the main cryptographic tools in Ring CT protocol.

Multilayered Linkable Spontaneous Anonymous Group (MLSAG) signature A ring signature allows for
an individual from a group to provide a signature such that it is impossible to identify which member of that group
made the signature. Ring CT protocol uses a ring signature with some additional properties. Their signature
scheme is called Multilayered Linkable Spontaneous Anonymous Group (MLSAG) signature, but it should be
noted that this is still a ring signature, not a group signature. Beyond the usual ring signature properties, MLSAG
has some specialized properties to make it usable for cryptocurrencies. Perhaps most importantly, MLSAG is
linkable which means that it is possible to detect if two signatures have been created with the same secret key.

5.2.2 Description of Ring CT

We briefly describe how a transaction looks like in the Ring CT protocol.
Receiver of the transaction always generates a new public key for MLSAG, that is, each key is only used

one time. Inputs and outputs in a transaction are not given as a plaintext, but as Pedersen commitments. Using
the homomorphic property, outsiders can still verify correctness of the transaction. For example if the input of
the transaction is Com(a1; r1) and the outputs are Com(a2; r2), Com(a3; r3), then anyone is able to verify that
Com(a2; r2) ·Com(a3; r3) = Com(a1; r1) if a1 = a2 +a3 and r1 = r2 +r3. Sender opens the commitment only
to the receiver of the transaction, so that he could verify that the received amount is correct. Since arithmetic is
done modulo p, receiver also provides range proofs showing that each committed value is in range {0, 1, ..., k}
where k � p. Finally, the sender picks a random subset of unspent public keys of different users together with
his own public key and makes a MLSAG signature of the transaction with those keys.
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The Ring CT protocol described here is simplified to some extent (for example homomorphic verification is
actually slightly more complicated), but it should give a general intuition of the techniques that are used.

5.2.3 Privacy of Ring CT

Next, we informally argue why Ring CT protocol should be secure.

Hiding the Receiver Since public keys of a single user are independent of each other, it is not possible (at least
not as easily as in Bitcoin) to link different transactions to the same user.

Hiding the Sender Properties of ring signature guarantee that an attacker should not be able tell which of the
public keys was used to create the signature and hence the sender of the transaction stays private.

Hiding the Amount Amounts in Ring CT are private since they are hidden using the Pedersen commitment
scheme.

Double Spending A malicious sender cannot double spend since this would require signing two messages with
the same secret key which can be detected due to linkability of MLSAG.

Range proofs avoid overflow attacks. For example, if input to a transaction is a1 = 1 and outputs are a2 = 2
and a3 = −1, then it still holds that a2 + a3 = a1. Of course, negative amount of currency does not make sense
and since arithmetic in Pedersen commitment is done modulo some large prime p, then −1 gets intepreted as
p − 1 which is a very large value. Hence such an attack would allow to illegally produce large amounts of new
currency. Range proofs show that each input and output is bounded by some small value k and hence this attack
is mitigated.

5.2.4 Vulnerabilities

The traceability of Monero transactions has been studied by Kumar et al. [KFTS17] and Möser et al. [MSH+18].
Both works found that transactions were quite easily traceable before the beginning of 2017 when Monero
introduced the Ring CT protocol. For example Kumar et al. claim that they could identify the real sender in 87%
of cases.

Still, even the Ring CT protocol has not made it impossible to lunch various network analysis attacks. Monero
is especially vulnerable to time analysis attacks: typically in the MLSAG signature, the correct input is the one
that was most recently created. According Möser et al., even in the current protocol this attack uniquely identifies
the sender in 45% of the cases.

5.3 Zerocash

Zerocash was the first scalable decentralized anonymous payment scheme. It is based on Zerocoin, however,
contrary to the latter, Zerocash provides strong privacy properties and allows for payments of any values. More
precisely, Zerocoin does not hide the value of a transaction and other metadata, it uses coins of fixed denomina-
tion and does not allow users to pay each other in “zerocoins” (another DLT, like Bitcoin network, is required
to make system work). All these issues were fixed in Zerocash. Due to the use of efficient zk-SNARKs, Zero-
cash was also the first truly scalable anonymous payment system. The theoretical result was later deployed as a
full-fledged cryptocurrency called Zcash.
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Overview of the system. Payments in Zerocash are done by transferring coins from one user to another. Es-
sentially, each Zerocash coin comes with a serial number sn, commitment cm and public address addrpku of its
owner u. Commitment cm is public (and stored in an efficient data structure), while the serial number and public
address remain private.

User u, who wants to transfer a coin c to user u′ (note, for various reasons it may hold that u = u′), performs
a zero-knowledge proof that she knows (1) c’s serial number such that there exists a corresponding commitment,
(2) a secret value addrsku corresponding to u’s public address, known only for the coin owner. Furthermore,
the proof assures that the coin was created correctly and has a correct value. Transaction results in coin c being
destroyed (its serial number is revealed and nobody accepts a coin with a public serial number) and a new coin
c′ created. The new coin contains (but does not reveal) the public address of the new owner u′. It also has a new
serial number determined by addrsku , what secures c′ from being spend by e.g. u.

Zcash and Monero The closest in privacy-preserving properties to Zcash is Monero [Noe15]. Instead of using
zk-SNARKs, the main privacy-preserving tool in Monero is a specialized ring signature. The major differences
between Zcash and Monero are:

– Coins are gradually introduced to the system by mining (like in Bitcoin) whereas Zcash requires all the
anonymous coins to be minted at the protocol setup. As a consequence Zcash’s approach seems more
centralized as all the coins are originally controlled by a small number of individuals.

– In Zcash privacy of transaction is optional. In practice, only 4% of all Zcash transactions are private. On
the other hand, in all transactions Monero hides the sender, recipient and amount of transferred money.

– Currently, efficient zk-SNARKs require trusted setup.

– Zcash is not known to be vulnerable to timing attacks while Monero is. On the other hand, usage pattern
related attacks are known for Zcash [KYMM18].

5.3.1 Preliminaries

Below we briefly introduce some basic cryptographic primitives that are necessary for the security and privacy
of Zerocash.

Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge (zk-SNARKs) Zerocash performance
heavily relies on NIZK arguments used therein. Thus, their efficiency is crucial. To that end, Zerocash authors
proposed to use zk-SNARKs, which assure that even for very long statements proofs are short – for a statement
x and the corresponding witness w the argument length is poly(|x| + |w|)o(1) (sublinear in the length of the
statement), [GW11]. More precisely, the authors describe the statement to prove as an arithmetic circuit (which
may be a non-trivial task) and use zk-SNARK (from [BCTV14]) to show that the circuit is satisfied.

Table 5.1 (based on Table 2 in [Gro16]) contains a short comparison of the recent zk-SNARKs for a circuit
satisfiability problem. Note that all of them are pairing based and utilizes the CRS model. Furthermore, the
arguments have constant size, not only sublinear. The properties taken into comparison are: CRS size, proof
size, prover P and verifier V computations and number of pairing equations that has to be performed by the
verifier to check the given proof.

Key-private encryption scheme A key-private encryption scheme is a public-key encryption scheme where
given a ciphertext c it is impossible (for a PPT adversary) to tell which public key was used to produce c. Key-
private encryption scheme is crucial for the privacy of Zerocash – given encrypted coin (see below) it should not
be possible to determine its receiver.
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CRS size Proof size P comp. V comp. PPE
[PHGR16] 7m+ n− 2`G 8G 7m+ n− 2` E `E, 11P 5
[Gro16] m+ 2nG 3G m+ 3n− `E `E, 3P 1
[BCTV14] 6m+ n+ `G1, mG2 7G1, 1G2 6m+ n− `E1, mE2 `E1, 12P 5
[Gro16] m+ 2nG1, nG2 2G1, 1G1 m+ 3n− `E1, nE2 `E1, 3P 1

Table 5.1: Comparison of zk-SNARKs for arithmetic circuits satisfiability. The statement has length `, the circuit
consists of m wires and n multiplication gates. G denotes group elements, E exponentiation of elements in the
group and P pairings. First two entries compare symmetric pairings, while the asymmetric pairings are compared
in the last two rows.

One-time signature scheme A one-time signature scheme is a signature scheme for which a secret key, public
key pair (skSig, pkSig) is valid for a single (yet arbitrarily picked) message only.

5.3.2 Payment Mechanism Ingredients

The Zerocash payment system consists of the following ingredients.

Users Let u be a Zerocash user with:

– Payment address: (apk, ask), which allows to receive funds (apk) and spend them (ask); each user may have
multiple addresses. Public key apk is derived from the secret one by applying a pseudorandom function
PRFaddr, i.e. apk = PRFaddrask

(0).

– Key-private encryption scheme keys: (pkEnc, skEnc), which allow to privately pass a coin to another user.
More precisely, to pass a coin c to receiver u′, user u encrypts c under u′’s public key pk′Enc. Receiver u′

uses her secret key sk′Enc to decrypt c.

We write addrpk to denote (apk, pkEnc) and addrsk to denote (ask, skEnc).

– One-time signature scheme keys: (pkSig, skSig), that are generated for every transaction separately and
prevent malleability of transactions.

Coins A coin c is a tuple of elements: c = (addrpk = (apk, pkEnc), v, ρ, r, s, cm). Entries apk and pkEnc are
a public address and a key picked by user u possessing c; value v denotes the value of the coin; cm is a coin
commitment, which uses randomness s; ρ and r are random numbers that contribute to the value cm commits
to.The coins are secret, the only part publicly available is the coin commitment cm, and address addrpk.

Serial number A serial number sn identifies the coin. Intuitively, transactions consists of sn and a (zero-
knowledge) proof that the spender knows a commitment cm corresponding to sn. Serial number is computed by
user u as follows: u picks randomness ρ and assigns sn← PRFsnask(ρ).

Coin commitments Coin commitments are one of few public parts of a coin. For efficiency reasons, all
commitments are stored in a Merkle tree. In Zerocash the tree is full and consists of 264 leaves, what means that
at most 264 coins can be ever created in the system.

For sake of privacy and security, coin commitments are computed as follows: (1) User u picks randomness
r and computes commitment k = Com(apk, ρ; r), for ρ used to compute serial number sn; (2) The commitment
computed above is nested into next-level commitment cm; more precisely, cm← Com(v, k; s).

31



D3.1 – State of the Art of Cryptographic Ledgers

5.3.3 Transferring Coins – Pour Transaction

The main building block to move the coins around is a Pour transaction that is used to transfer funds from one
address to another, to split coins and to withdraw coins from the system. Given coins cold1 , cold2 , Pour transaction
allows to create two new coins cnew1 , cnew2 such that the value cold1 .v+ cold2 .v is equal to cnew1 .v+ cnew2 .v+ vpub,
where vpub is a public value redeemed from the old coins cold1 , cold2 (i.e. this value can be used to withdraw some
amount of money from the system, e.g. to cover transaction fees). Say that the receivers of coins cnew1 and cnew2

the are addresses cnew1 .addrpk and cnew2 .addrpk respectively.
The transaction is defined as a tuple

Pour = (rt, cold1 .sn, cold2 .sn, cnew1 .cm, cnew2 .cm, πPour, c
new
1 .c, cnew2 .c, hSig, h1, h2, σ, pkSig) ,

such that:
1. Value cold1 .sn, cold2 .sn are serial numbers of the redeemed coins,
2. Entries cnew1 .cm, cnew2 .cm are coin commitments to the newly created coins.
3. Ciphertext cnew1 .c encrypts under cnew1 .pkEnc values (cnew1 .v, cnew1 .ρ, cnew1 .r, cnew1 .s); similarly for cnew2 .c.
4. Values hSig, h1 and h2 tie cnew1 .ask and cnew2 .ask in the following way: for given collision-resistant hash

function H, hSig = H(pkSig), h1 = PRFpkcnew
1 .ask

(hSig) and h2 = PRFpkcnew
2 .ask

(hSig).
5. The next element, σ is a signature done under skSig on every previous element of the Pour transaction.
6. For sake of correctness, Merkle tree root rt is also included in the transaction.

Proving that transaction is correct The most important (and computational-power consuming) part of the
system is a NIZK proof that a Pour transaction is correct, i.e. user performing it has sufficient funds, there is no
double spending, no new coins are created etc. To assure this, the transaction contains a zk-SNARK proof for
the following statement:

– Coins are well-formed, i.e. (1) cold1 .k = Com(cold1 .apk, ρ; c.r), cold1 .cm = Com(cold1 .v, cold1 .k; cold1 .s); sim-
ilarly for cold2 . (2) cnew1 .k = Com(apk, ρ; cnew1 .r), cnew1 .cm = Com(cnew1 .v, cnew1 .k; cnew1 .s); (3) cnew2 .k =
Com(apk, ρ; cnew2 .r), cnew2 .cm = Com(cnew2 .v, cnew2 .k; cnew2 .s).

– The address secret key matches the address public key, i.e. cold1 .apk = PRFaddr
cold1 .ask

(0); similarly for cold2 .

– The serial number is computed correctly, i.e. cold1 .sn = PRFsn
cold1 .ask

(0); similarly for cold2 .

– Coin commitment cold1 .cm is a leaf in a Merkle tree of root rt; similarly for cold2 .
– The values add up, i.e. cold1 .v + cold2 .v = cnew1 .v + cnew2 .v + vpub.
– Values h1 and h2 have been correctly computed.

Recall, the statement above is written in Zerocash as an arithmetic circuit, such that the statement holds iff the
circuit is satisfiable. The transaction as stated above is publicly verifiable assuming πPour is, which is the case.

5.3.4 Privacy of Zerocash

Similarly to Bitcoin, coins in Zerocash are transferred from one address to another. However, in the latter, both
sender and receiver addresses are hidden. What is only revealed are coin commitments of the newly created
coins, which are public anyway.

Hiding the sender Pour transaction does not reveal its sender since:
– Coins serial numbers sn are values of pseudorandom functions evaluated at random point with key ask.

From the security of PRFs, this reveals nothing about ask.
– Coin commitments cm are perfectly hiding. From the security of commitment schemes, cm reveals nothing

about the underlying values.
– Proof πPour is zero-knowledge, thus it hides its witness.
– hSig is a value of a hash function evaluated on a one-time key pkSig; values h1 and h2 come from PRFs, as

mentioned above, they hide function’s key.
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– signature σ is done under one-time key pkSig
Other Pour entries are independent from addresses of the sender.

Hiding the receiver Pour transaction does not reveal its receiver since:
– Ciphertexts c are key-private, thus they do not reveal the public key used in encryption.

Other Pour entries are independent from addresses of the receiver.

Hiding the amount Pour transaction does not reveal moved value since:
– Commitments cm hides committed values.
– Transaction πPour is zero-knowledge and hides its witness.
– Ciphertexts c hides encrypted values.

Other Pour entries are independent from the value of the transaction.

5.4 Privacy-preserving Auditing for Distributed Ledgers

In [NVV17], Narula et al. presented zkLedger as the first distributed ledger system to provide strong transaction
privacy, public verifiability, and practical, useful auditing. zkLedger guarantees strong transaction privacy: an
adversary cannot recognize the participants in a transaction or how much money is being transacted. Also an
important property of zkLedger is that it does not reveal the transaction graph, or linkages between transactions.
In this system the type of asset being transferred and the time of transactions are public and all participants in
zkLedger can still verify transactions and an auditor can issue a set of auditing queries to the participants and
receive answers that are provably consistent with the ledger. Then, by using a modified version of the btcec
library [NVV17] and SHA-256 as the cryptographic hash function, they implement a prototype of zkLedger.

One of the important property of zkLedger is preserving privacy such that still it allows to an auditor to
verify the data in the ledger. To this aim, zkLedger uses Pedersen commitments [Ped91] to hide the values
in ledger and non-interactive zero-knowledge proofs (NIZKs) [BFM88] to make privacy-preserving assertions
about payment details. Pedersen commitment is perfectly hiding and can be homomorphically combined, so in
zkLedger for instance, a verifier can confirm that the sum of the outputs is less than or equal to the sum of the
inputs, conserving assets. Also an auditor can combine commitments to compute linear combinations of values
in different rows in the ledger.

The crucial property for such a system is the completeness which means that a participant cannot omit trans-
actions or lie to the auditor. More precisely, since in the zkLedger an auditor cannot determine the participants
of transactions, so zkLedger must guaranty that during auditing, a participant cannot leave out transactions to
hide assets from the auditor. zkLedger uses a table-construction in the ledger such that a transaction is a row
which includes an entry for every participant, and an empty entry is indistinguishable from an entry involving a
transfer of assets.

In terms of efficiency, zkLedger implements a number of optimizations as follows:
1. In order to have fast generating assets proofs, every participant and the auditor keep commitment caches,

which are rolling products of every participants’column in the ledger. This also makes it fast to answer
audits.

2. For the sake of lower communication costs in zkLedger, participants do not have to interact to construct
the proofs for the transaction and similar to other blockchain systems the spender can create the transaction
alone.

The zkLedger system consists of three main entities, the shared ledger, participants (banks) and auditor. The
shared ledger is a table where the participants (banks) send their transactions. In order to check the validity of the
submitted transactions, an auditor Auditor queries participants about their contents on the ledger and verifies their
transaction. Briefly, zkLedger uses ZK proofs, additively homomorphic commitment schemes and permissioned
ledgers to hides participants, the amounts, and links between transactions while it is still a verifiable transaction
on the ledger and the Auditor can receive reliable answers from the participants based on its queries.
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In the following there is comparison between zkLedger and some other well known systems related to work
in auditing or computing on private data and privacy-preserving blockchains,

zkLedger vs Provisions [DBB+15] Similar to the zero-knowledge proofs used in zkLedger, Provisions uses
Proof of Assets and Proof of Liabilities, and permissionless ledgers for Bitcoin exchanges to prove they are
solvent without revealing their total holdings. The Provisions protocol relies on range proofs to prevent an
exchange from inserting fake accounts with negative balances. Size of proofs are very large (about tens of GB)
and are linear in the number of customers. However, in Provisions, an exchange could borrow private keys from
another Bitcoin holder and thus prove assets they do not actually hold; in fact multiple exchanges could share
the same assets. Moreover, Provisions does not provide completeness. zkLedger uses a columnar construction
with a distributed ledger and achieves completeness.

zkLedger vs Bitcoin In Bitcoin the transaction amounts and the links between transactions are public, al-
though using Confidential Transactions [Max15] and Confidential Assets [PBF+17], one can hide the amounts
in transactions, but still they reveal the transaction graph and do not provide completeness. zkLedger pro-
vides stronger transaction privacy and private auditing, but at the cost of scalability. Transactions in zkLedger

are sized order the number of participants in the whole system, requiring more time to produce and verify as
the number of participants grows. This makes zkLedger more suitable to ledgers with fewer participants who
require more privacy.

zkLedger vs Solidus [PBF+17] In Solidus, the transaction graph and transaction amount between bank cus-
tomers are blinded by using Oblivious RAM but still it can only support auditing by revealing all of the keys used
in the system to an auditor, and opening transactions. Note that however Solidus initially targets permissioned
ledger model which the ledger maintainers should be a permissioned (fixed-entity) group, but in general they
also can be an unpermissioned (fully decentralized) ledger, or any other trustworthy append-only data structure.
zkLedger provides private auditing with the same performance of Solidus.

34



Chapter 6

The Relation Between Distributed Ledger
Technology and Secure Multiparty
Computation

Secure multiparty computation (MPC) enables multiple mutually distrusting parties to jointly compute some
function of their private inputs without revealing any more about their private data than what is revealed through
the result of the function. This chapter summarises the major results of how distributed ledger technology
(DLT) can enhance MPC and how MPC techniques can be exploited to provide additional security properties to
distributed ledger protocols.

6.1 Fairness

A fundamental issue in MPC is the fairness problem, i.e., the problem of ensuring that if some party receives the
results of a computation, then all parties receive that same result. A classical result by Cleve shows that fairness
is impossible to achieve if at least half of the parties act maliciously, i.e., they do not follow the protocol [Cle86].
In particular, Cleve’s result implies that fair two-party coin tossing is impossible. The problem is that, if at some
point during the protocol, one party determines that the outcome of the protocol will be unfavourable (to that
party), it can abort the protocol completely.

Although perfect fairness is impossible without honest majority, there are various works showing the fea-
sibility of weaker notions of fairness. This section provides an overview of how DLT can be used to achieve
certain notions of fairness for MPC.

Despite the impossibility of fair two-party coin tossing, Back and Bentov [BB14] show that using the
blockchain makes fair two-party (Bitcoin) lottery possible. The protocol uses smart contracts to ensure that
if one of the parties aborts the coin tossing protocol, the other party wins by default. The key reason why this
makes the protocol fair is that the process of awarding the winner some amount of Bitcoin is inseparable of the
process of tossing the coin. So even though the outcome of the coin toss portion of the protocol may actually be
biased, the lottery protocol as a whole is fair.

Many solutions that use the blockchain as part of their solution to the fairness problem follow the same
principle of compensating honest parties in case a corrupted party aborts the protocol. The remainder of this
chapter focuses on solutions for secure multiparty computation. Solutions specific to two-party fairness are not
included. Additionally, several (early) solutions explicitly refer to, or are implemented on Bitcoin. For these
works, Bitcoin is mentioned explicitly, rather than distributed ledger technology in general.

A certain notion of fairness can be achieved using so-called timed commitments, introduced by Boneh and
Naor [BN00]. A timed commitment scheme is a commitment scheme which has the additional property that the
other parties can force the commitment to be revealed if the committer fails to do so.

35



D3.1 – State of the Art of Cryptographic Ledgers

Andrychowicz et al. [ADMM14] introduce a variant of timed commitments, in which, instead of forcing the
commitment to be revealed, instead, the committer is forced to compensate the other parties in the form of a
Bitcoin fine. The authors demonstrate the use of their version of the timed commitment protocol and the aspect
of parties respecting the outcome of the protocol by implementing a fair multi-party lottery. One downside of
this protocol is that the amount of Bitcoin each party needs to set aside for compensation in case they behave
dishonestly is quadratic in the total number of parties. The total number of transactions required is also quadratic
in the number of parties.

Bentov and Kumaresan [BK14] propose a formal definition of the claim-or-refund functionality. The claim-
or-refund functionality is a two-party primitive that allows a sender to conditionally transfer a deposit to a re-
ceiver. If the receiver does not uphold the condition, then the sender can reclaim the deposit at some later time.
Subsequently, the authors formally define functionalities for secure computation with penalties, and secure lot-
teries. As with the variant on timed commitments by [ADMM14], secure computation with penalties does not
truly achieve fairness, i.e., it is still possible for the adversary to obtain the result of the computation without
the honest parties learning the same, but the honest parties will be compensated in the form of an previously
agreed upon amount of coins in case this happens. The authors also show how to construct protocols for these
functionalities from the claim-or-refund functionality.

In [KB14], Kumaresan and Bentov study how Bitcoin can be used to incentivise correct computation. This
work improves on the fairness results of [BK14], by the same authors, by showing a constant round fair secure
computation protocol.

Kumaresan et al. [KMB15] extend the above techniques from secure function evaluation to reactive func-
tionalities, in which computation proceeds in multiple stages and parties can make decisions and input new
information at later stages, depending on the output of earlier stages. In particular, this construction allows for
stateful computation. As an instantiation of their techniques, the authors present a secure protocol for playing
Texas hold ’em poker.

In [KZZ16], Kiayias et al. give a new formalisation using two ideal functionalities for a global transaction
ledger and a global clock. The advantage of this formalisation is that the parties can be modelled as regular
interactive Turing machines, whereas [BK14] required special features to be added. This places the new formali-
sation withing the standard model. The authors also express their framework in the universal composition setting
with global setup for the ledger and clock functionalities and provide a composition theorem for MPC protocols
with compensation. Finally, the authors introduce a robust MPC protocol with compensation. Robustness is a
stronger property than fairness. The fair protocols with compensation discussed above ensure that parties that
do not receive the outcome of the computation, receive compensation instead, but only if some other party does
receive the result. Robustness dictates that, if the protocol successfully concludes an initial deposit phase, then all
parties which do not obtain the result receive compensation, regardless of whether any other party has obtained
the result.

In [KB16], Kumaresan and Bentov improve the efficiency of claim-or-refund based fair computation through
amortisation. The main idea is that parties can use the same deposit for multiple MPC instances.

[KVV16] improves on the script complexity of claim-or-refund transaction, i.e, the amount of work miners
put in to verify a contract, from quadratic to linear in the number of parties. It also improves on the protocol
of [KMB15] by reducing the number of claim-or-refund transactions from quadratic to linear in the number of
parties.

In [CGJ+17], Choudhuri et al. present a new model for completely fair MPC using a public bulletin board.
Bulletin boards can be achieved through DLT. Unlike most results discussed in this chapter, which define fairness
as penalising the parties that abort after obtaining the output, this work achieves fairness in the original sense:
either every party obtains the output, or no party does. The main idea of this work is that the problem of fair
computation can be reduced to the problem of fair decryption. This is possible by using an unfair MPC protocol
to compute an encryption of the desired output, rather than the output itself. Fair decryption itself, however,
is a complete functionality for fair MPC [GIM+10], meaning that it cannot be achieved in the standard model
either. The key insight of this work is that fair decryption is possible for a witness encryption scheme using a
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bulletin board. A witness encryption scheme is an encryption scheme that allows encryption of a message with
a statement. Decryption is only possible using a witness for the statement. Constructing the statement in such a
way that the witness is equal to the proof that some special value is posted on the bulletin board ensures that if
one party obtains the witness, then every party can do so, due to the public nature of the bulletin board.

[BKM17] follows up on the work of [KB16] and offers several efficiency improvements in a model that
allows for stateful smart contracts. In this model, the authors show a constant round (counting rounds of interac-
tion with the cryptocurrency network) setup phase, as opposed to the results of [KB16], which required a number
of rounds quadratic in the number of parties. They also reduce the size of the deposits from quadratic to linear
in the number of parties.

6.2 Miscellaneous Enhancements to Secure Computation

This section provides an overview of how distributed ledger technology can be exploited to improve various
properties relating to secure multiparty computation.

In principle MPC is concerned with securely computing some output, given some input. This does not regard
the issues of authenticity of the input, or whether the parties actually honor the output that is computed. In
addition to the fairness results discussed above, Andrychowicz et al. [ADMM14] also show how to link inputs
and outcomes to Bitcoin transactions, solving these issues insofar as they relate to Bitcoin transactions.

Beyond the fairness result of [KB14], the authors also discuss how Bitcoin can be used in incentivise ver-
ifiable computation, which is an interesting primitive for the construction of special multiparty computation
protocols. A publicly verifiable computation scheme allows a client to outsource computation to a worker. In
addition to the computation result, the worker should also produce a proof that allows the client to verify that the
claimed result is indeed correct. For such a scheme to be practical, it is important that the client can verify the
correctness faster than performing the computation itself. Pinocchio was the first verifiable computation scheme
that was claimed to be (nearly) practical [PHGR13]. A verifiable computation scheme is called publicly verifi-
able if, given the necessary keys, any party can verify the correctness of the result. Crucially, public verifiability
requires that knowledge of the verification key does not allow the worker to produce an invalid proof.

In [KB14] the authors show how to incentivise computation by integrating verifiable computation with Bit-
coin. Despite the relatively efficient verification property of verifiable computation schemes, a nave integration
of a verifiable computation scheme with Bitcoin in which the network performs the verification of the result to
determine whether payout occurs would still be too expensive. Instead, the authors introduce a variant of the
claim-or-refund functionality in which the miners only need to perform the verification algorithm in case the
client fails to pay the worker. [KB14] also formalises and proposes candidate realisations for non-interactive
bounty mechanisms, in which a client can pose a computational problem and any party can present a solution
to claim the reward, i.e., any party can act as the worker and the identity of such workers does not have to be
known at the time the client poses the problem. Unfortunately, the actual Bitcoin protocol did not support the
instructions necessary to implement these protocols at the time of writing.

Electronic voting is a special case of MPC. The problem of private voting using bitcoin was studied by Zhao
and Chan [ZC15]. Their protocol makes use of a threshold signature scheme to ensure that all voters agree on
the signature needed for the compensation transaction.

6.3 Privacy and Secure Storage

The previous two sections concerned the various ways in which DLT can be used to improve the properties of
MPC. This final section summarises results in which MPC techniques are employed to provide data privacy
properties to ledgers.

Zyskind et al. introduced the secure computation platform Enigma [ZNP15]. Enigma focusses on issues
revolving around secure storage, exploiting the ledger to manage access control and serve as a log of events.
Data are not stored directly on the ledger, instead, distributed hash tables are used. This way, not all nodes need
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to store the data. Storage and computation fees can be arranged using the cryptocurrency underlying the ledger.
Storage fees are received by those parties that actually store the data, Computation fees by those parties that carry
out computation on behalf of some other party.

The smart contract system Hawk [KMS+16] uses MPC techniques to improve privacy properties of dis-
tributed ledgers. Hawk offers transactional privacy and private smart contracts. The execution of private smart
contracts is facilitated by a minimally trusted manager, a special party that can see user’s inputs and is trusted not
to disclose them. This manager is not a true trusted party, however, as it cannot affect the correct execution of a
contract, nor affect the security of the underlying currency. The authors note that the manager could be replaced
by MPC, which would strengthen users’ privacy, but have opted not to do so out for efficiency and practicality.

The work of Benhamouda et al. [BHH18] investigates the use of MPC techniques for storing private data on
the ledger and to evaluating smart contracts based on such private data. The authors implement their system on
the permissioned blockchain architecture Hyperledger Fabric. Private data are stored encrypted on the ledger,
with the data owner having access to the corresponding keys. This is unlike other systems that use DLT for
private data storage, which typically store the data “off-chain” only store the information required to facilitate
retrieval of the data. Contracts involving private data can be evaluated using MPC between (at least) the parties
whose private data are referred to in the contract.

In [KAS+18] Kokoris-Kogias et al. introduce the decentralised access control mechanism for private data
storage on blockchain systems SCARAB. SCARAB addresses the issues of accountability and revocability.
Accountability is provided by atomically logging every request that is handled on the ledger. Revocability is
achieved through collectively managed data access policies.
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Chapter 7

Open Problems

Illegal content in the blockchain of Bitcoin. A recent work [MHH+18] shows that the blockchain of Bitcoin
contains illegal content, for instance files of child pornography and others sensible information that can violate
the right to be forgotten of a person. In addition, the need of privacy is motivating additional regulations (e.g.,
GDPR) that require to delete data collected in the past. As a consequence governments could enforce the removal
of some content of a blockchain and this can cause to break down of the entire Bitcoin system.

An interesting open question is to find a practical solution that allows to delete data still keeping some
sufficient structure of the blockchain that is sufficient for the applications.

Relation stake-based consensus and traditional Byzantine consensus. Many public blockchain networks
are currently experimenting with proof-of-stake consensus. Some, like the Cardano Settlement Layer with
Ouroboros, use only the pure stake held by its members, in terms of a token or cryptocurrency. Others, like
the Casper protocol proposal for Ethereum rely on validators to actively lock up some of their currency holdings
before they then can participate in a more traditional BFT voting protocol. This investment is the stake that they
might lose if they misbehave during the voting protocol, i.e., through equivocation. Yet others, like Algorand,
essentially elect a small committee using a proof-of-work lottery and then execute rounds of BFT voting among
the committee.

These competing approaches are currently not well understood. Why is stake used for delegating to BFT-
style voting protocols? In which sense do these protocols maintain incentive compatibility and lead to equilibria?
How can the differences between these protocols be analyzed formally?

Relaxing time assumptions. One of the most common approaches in the UC treatments of blockchains is
to assume a mechanism that allows the parties to be somehow synchronized. The level of synchronization
required by the protocols depends on many aspects; in general a more flexible blockchain could require a weaker
synchronisation. In the UC treatments of blockchain, such as in [GKL14, BGK+18, DGKR18, BMTZ17], the
synchronization is modelled as a clock that the parties can have access to. Though, in the real world these
“timing” assumptions could be not realistic. An open problem is to better understand what is the minimum level
of synchrony required to model a meaningful blockchain.

Recovering from corrupted ledger zkLedger provides publicly verifiable auditing on confidential transac-
tions. It is not clarified that what happens if the distributed ledger would be corrupted by some malicious parties.
In short answer all parties need to be gathered to construct old transactions. Addressing this issue precisely could
be a prominent improvement in the zkLedger.

Moreover, current version of zkLedger does not provide support for transactions That are committed un-
willingly. Presenting a version of zkLedger which address this issue is an interesting research topic in this
direction,.
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More efficient range proofs for confidential transactions One of the main primitives in confidential trans-
actions, as described in Sec. 5.1, are range proofs. Proposing a more efficient range proof can improve the
performance of whole system. In the current version for each commitment there is an individual range proof.
Another interesting research direction could be aggregating range proofs, such that one can give a proof for two
commitments. Such a proof can be place in Merkle tree to give efficient range proof of the children, but with
more efficient verification.

Post-quantum confidential transactions The primitives used in a version of confidential transactions from
[PBF+17] lie on elliptic-curve discreet-log assumption which is not secure against quantum attacker. Substituting
used primitives with post-quantum secure primitives could be a big improvement.
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[DR85] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agreement. J.
ACM, 32(1):191–204, 1985.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement. SIAM
J. Comput., 12(4):656–666, 1983.

[ES14] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. In Nico-
las Christin and Reihaneh Safavi-Naini, editors, Financial Cryptography and Data Security - 18th
International Conference, FC 2014, Christ Church, Barbados, March 3-7, 2014, Revised Selected
Papers, volume 8437 of Lecture Notes in Computer Science, pages 436–454. Springer, 2014.
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